Advertisement

Food Analytical Methods

, Volume 13, Issue 1, pp 249–259 | Cite as

Determination of Ethanol in Beers Using a Flatbed Scanner and Automated Digital Image Analysis

  • Luana Curbani
  • Jane Mary Lafayette Neves Gelinski
  • Endler Marcel BorgesEmail author
Article

Abstract

A new, simple, and low-cost method is proposed to determine ethanol content in beer samples. The method is economical and environmentally friendly because it uses low-cost materials based on natural indicators and generates only 200 μL of waste per test. The method is based in the reaction of ethanol with potassium dichromate in acid media generating Cr3+; 100 μL of K2Cr2O7 0.2 mol L−1 in sulfuric acid 20%, v/v was placed in wells of a 96-micro-well plate, then, 50 μL of samples or standards were placed in each well, after 1 h incubation at 60 °C, a digital image of the plate was obtained using a flatbed scanner, and RGB values were extracted automatically from all wells in less than 5 min using ImageJ’s plugin “ReadPlate.” The standard calibration plot was linear for an ethanol content ranging from 0.4 to 2%, with limits of detection and quantification of 0.09% and 0.27%, respectively. Ethanol content determined in beer samples with proposed method agree with those obtained with the microplate reader and with those claimed in labels. Thus, this method can be especially advantageous for countries were available resources for analytical equipment investments are scant.

Keywords

Beer Ethanol content Quality control ImageJ RGB 

Notes

Funding Information

The authors acknowledge financial support and fellowships from the Brazilian agencies FAPESC (Fundação de Amparo a Pesquisa do Estado de Santa Catarina), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) Project number 402226/2016-0, and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

Compliance with Ethical Standards

Conflict of Interest

Endler M Borges declares that he has no conflict of interest. Luana Curbani declares that she has no conflict of interest. Jane M.L.N. Gelinski declares that she has no conflict of interest.

Ethical Approval

This article does not contain any studies with human or animal subjects.

Informed Consent

Publication has been approved by all individual participants.

Supplementary material

12161_2019_1611_MOESM1_ESM.xlsm (41 kb)
ESM 1 (XLSM 41 kb)

References

  1. Abderrahim M, Arribas S, Condezo-Hoyos L (2016) A novel high-throughput image based rapid Folin-Ciocalteau assay for assessment of reducing capacity in foods. Talanta 152:82–89.  https://doi.org/10.1016/J.TALANTA.2016.01.051 CrossRefPubMedGoogle Scholar
  2. Aguirre MÁ, Long KD, Canals A, Cunningham BT (2019a) Point-of-use detection of ascorbic acid using a spectrometric smartphone-based system. Food Chem 272:141–147.  https://doi.org/10.1016/J.FOODCHEM.2018.08.002 CrossRefPubMedGoogle Scholar
  3. Aguirre MÁ, Long KD, Cunningham BT (2019b) Spectrometric smartphone-based system for ibuprofen quantification in commercial dosage tablets. J Pharm Sci 108:2593–2598.  https://doi.org/10.1016/J.XPHS.2019.03.010 CrossRefPubMedGoogle Scholar
  4. Ait Errayess S, Idrissi L, Amine A (2018) Smartphone-based colorimetric determination of sulfadiazine and sulfasalazine in pharmaceutical and veterinary formulations. Instrum Sci Technol 46:656–675.  https://doi.org/10.1080/10739149.2018.1443943 CrossRefGoogle Scholar
  5. Araújo A, Marinho W, de Araújo GA (2018) A fast and inexpensive chemometric-assisted method to identify adulteration in acai (Euterpe oleracea) using digital images. Food Anal Methods 11:1920–1926.  https://doi.org/10.1007/s12161-017-1127-4 CrossRefGoogle Scholar
  6. Azeem SMA, Madbouly MD, El-Shahat MF (2019) Determination of nitrite in processed meat using digital image method and powdered reagent. J Food Compos Anal 81:28–36.  https://doi.org/10.1016/J.JFCA.2019.05.003 CrossRefGoogle Scholar
  7. Azevedo AM, Prazeres DMF, Cabral JMS, Fonseca LP (2005) Ethanol biosensors based on alcohol oxidase. Biosens Bioelectron 21:235–247.  https://doi.org/10.1016/J.BIOS.2004.09.030 CrossRefPubMedGoogle Scholar
  8. Benedetti LP, dos Santos VB, Silva TA et al (2015) A digital image-based method employing a spot-test for quantification of ethanol in drinks. Anal Methods 7:4138–4144.  https://doi.org/10.1039/C5AY00529A CrossRefGoogle Scholar
  9. Biancolillo A, Bucci R, Magrì AL, Magrì AD, Marini F (2014) Data-fusion for multiplatform characterization of an italian craft beer aimed at its authentication. Anal Chim Acta 820:23–31.  https://doi.org/10.1016/J.ACA.2014.02.024 CrossRefPubMedGoogle Scholar
  10. Böck FC, Helfer GA, da Costa AB, Dessuy MB, Ferrão MF (2018) Rapid determination of ethanol in sugarcane spirit using partial least squares regression embedded in smartphone. Food Anal Methods 11:1951–1957.  https://doi.org/10.1007/s12161-018-1167-4 CrossRefGoogle Scholar
  11. Bogucki R, Greggila M, Mallory P et al (2019) A 3D-printable dual beam spectrophotometer with multiplatform smartphone adaptor. J Chem Educ. 96:1527–1531. https://doi.org/10.1021/acs.jchemed.8b00870 CrossRefGoogle Scholar
  12. Botasini S, Luzuriaga L, Cerdá MF et al (2010) Multiple experiments and a single measurement: introducing microplate readers in the laboratory. J Chem Educ 87:1011–1014.  https://doi.org/10.1021/ed100789j CrossRefGoogle Scholar
  13. Botelho BG, de Assis LP, Sena MM (2014) Development and analytical validation of a simple multivariate calibration method using digital scanner images for sunset yellow determination in soft beverages. Food Chem 159:175–180.  https://doi.org/10.1016/J.FOODCHEM.2014.03.048 CrossRefPubMedGoogle Scholar
  14. Brereton P, Hasnip S, Bertrand A, Wittkowski R, Guillou C (2003) Analytical methods for the determination of spirit drinks. TrAC Trends Anal Chem 22:19–25.  https://doi.org/10.1016/S0165-9936(03)00103-1 CrossRefGoogle Scholar
  15. Capitán-Vallvey LF, López-Ruiz N, Martínez-Olmos A, Erenas MM, Palma AJ (2015) Recent developments in computer vision-based analytical chemistry: a tutorial review. Anal Chim Acta 899:23–56.  https://doi.org/10.1016/J.ACA.2015.10.009 CrossRefPubMedGoogle Scholar
  16. Catelani TA, Bittar DB, Pezza L, Pezza HR (2019) Determination of amino acids in gym supplements using digital images and paper platform coupled to diffuse reflectance spectroscopy and USB device. Talanta 196:523–529.  https://doi.org/10.1016/J.TALANTA.2018.12.052 CrossRefPubMedGoogle Scholar
  17. Colzani H, Rodrigues QEAG, Fogaça C et al (2017) Determinação de fosfato em refrigerantes utilizando um scanner de mesa e análise automatizada de dados: um exemplo didático para ensino de química. Quim Nova 40:833–839.  https://doi.org/10.21577/0100-4042.20170035 CrossRefGoogle Scholar
  18. Crowell EA, Ough CS (1979) A modified procedure for alcohol determination by dichromate oxidation. Am J Enol Vitic 30:61–63Google Scholar
  19. da Silva RS, Borges EM (2019) Quantitative analysis using a flatbed scanner: aspirin quantification in pharmaceutical tablets. J Chem Educ. 96:1519–1526  https://doi.org/10.1021/acs.jchemed.8b00620 CrossRefGoogle Scholar
  20. Damasceno D, Toledo TG, da Silva SA et al (2016) CompVis: a novel method for drinking water alkalinity and total hardness analyses. Anal Methods 8:7832–7836.  https://doi.org/10.1039/C6AY02215D CrossRefGoogle Scholar
  21. Franco MOK, Suarez WT, Maia MV, dos Santos VB (2017) Smartphone application for methanol determination in sugar cane spirits employing digital image-based method. Food Anal Methods 10:2102–2109.  https://doi.org/10.1007/s12161-016-0777-y CrossRefGoogle Scholar
  22. Diawati C, Liliasari, Setiabudi A, Buchari (2018) Using project-based learning to design, build, and test student-made photometer by measuring the unknown concentration of colored substances. J Chem Educ 95:468–475.  https://doi.org/10.1021/acs.jchemed.7b00254 CrossRefGoogle Scholar
  23. dos Santos VB, da Silva EKN, de Oliveira LMA, Suarez WT (2019) Low cost in situ digital image method, based on spot testing and smartphone images, for determination of ascorbic acid in Brazilian Amazon native and exotic fruits. Food Chem 285:340–346.  https://doi.org/10.1016/J.FOODCHEM.2019.01.167 CrossRefPubMedGoogle Scholar
  24. Eltermann EE, De Matos ÂM, Da Silva DA (2016) Microcervejarias catarinenses e o turismo: da formação de tipologias do produto às aproximações com a atividade. Appl Tour 1:73.  https://doi.org/10.14210/at.v1n2.p73-95 CrossRefGoogle Scholar
  25. Fernandes DD d S, Romeo F, Krepper G et al (2019) Quantification and identification of adulteration in the fat content of chicken hamburgers using digital images and chemometric tools. LWT 100:20–27.  https://doi.org/10.1016/J.LWT.2018.10.034 CrossRefGoogle Scholar
  26. Gallignani M, Garrigues S, de la Guardia M (1994) Derivative Fourier transform infrared spectrometric determination of ethanol in alcoholic beverages. Anal Chim Acta 287:275–283.  https://doi.org/10.1016/0003-2670(93)E0587-W CrossRefGoogle Scholar
  27. Grudpan K, Kolev SD, Lapanantnopakhun S, McKelvie ID, Wongwilai W (2015) Applications of everyday IT and communications devices in modern analytical chemistry: a review. Talanta 136:84–94.  https://doi.org/10.1016/J.TALANTA.2014.12.042 CrossRefPubMedGoogle Scholar
  28. Helfer GA, Tischer B, Filoda PF, Parckert AB, dos Santos RB, Vinciguerra LL, Ferrão MF, Barin JS, da Costa AB (2018) A new tool for interpretation of thermal stability of raw milk by means of the alizarol test using a PLS model on a mobile device. Food Anal Methods 11:2022–2028.  https://doi.org/10.1007/s12161-018-1190-5 CrossRefGoogle Scholar
  29. João AF, Squissato AL, Fernandes GM, Cardoso RM, Batista AD, Muñoz RAA (2019) Iron (III) determination in bioethanol fuel using a smartphone-based device. Microchem J 146:1134–1139.  https://doi.org/10.1016/J.MICROC.2019.02.053 CrossRefGoogle Scholar
  30. Jung CR, Ortiz RS, Limberger R, Mayorga P (2012) A new methodology for detection of counterfeit Viagra® and Cialis® tablets by image processing and statistical analysis. Forensic Sci Int 216:92–96.  https://doi.org/10.1016/J.FORSCIINT.2011.09.002 CrossRefPubMedGoogle Scholar
  31. Kehoe E, Penn RL (2013) Introducing colorimetric analysis with camera phones and digital cameras: an activity for high school or general chemistry. J Chem Educ 90:1191–1195.  https://doi.org/10.1021/ed300567p CrossRefGoogle Scholar
  32. Korolija JN, Plavsic JV, Marinkovic D, Mandic LM (2012) Beer as a teaching aid in the classroom and laboratory. J Chem Educ 89:605–609.  https://doi.org/10.1021/ed200187c CrossRefGoogle Scholar
  33. Kuntzleman TS, Jacobson EC (2016) Teaching beer’s law and absorption spectrophotometry with a smart phone: a substantially simplified protocol. J Chem Educ 93:1249–1252.  https://doi.org/10.1021/acs.jchemed.5b00844 CrossRefGoogle Scholar
  34. Leme DS, da Silva SA, Barbosa BHG, Borém FM, Pereira RGFA (2019) Recognition of coffee roasting degree using a computer vision system. Comput Electron Agric 156:312–317.  https://doi.org/10.1016/J.COMPAG.2018.11.029 CrossRefGoogle Scholar
  35. León-Roque N, Abderrahim M, Nuñez-Alejos L, Arribas SM, Condezo-Hoyos L (2016) Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks. Talanta 161:31–39.  https://doi.org/10.1016/J.TALANTA.2016.08.022 CrossRefPubMedGoogle Scholar
  36. Li F, Bao Y, Wang D, Wang W, Niu L (2016) Smartphones for sensing. Sci Bull 61:190–201.  https://doi.org/10.1007/S11434-015-0954-1 CrossRefGoogle Scholar
  37. Lima MJA, Nascimento CF, Rocha FRP (2017) Feasible photometric measurements in liquid–liquid extraction by exploiting smartphone-based digital images. Anal Methods 9:2220–2225.  https://doi.org/10.1039/C7AY00388A CrossRefGoogle Scholar
  38. Lopez-Molinero A, Jimenez-Lamana J (2016) The chromatic variance matrix in digital image based methods for the potential evaluation as quantitative procedures. Chemom Intell Lab Syst 157:29–34.  https://doi.org/10.1016/J.CHEMOLAB.2016.06.010 CrossRefGoogle Scholar
  39. Macedo dos Santos P, Pereira-Filho ER (2013) Digital image analysis – an alternative tool for monitoring milk authenticity. Anal Methods 5:3669.  https://doi.org/10.1039/c3ay40561c CrossRefGoogle Scholar
  40. Marinho OR, Lima MJA, Rocha FRP, Reis BF, Kamogawa MY (2019) A greener, fast, and cost-effective smartphone-based digital image procedure for quantification of ethanol in distilled beverages. Microchem J 147:437–443.  https://doi.org/10.1016/J.MICROC.2019.03.054 CrossRefGoogle Scholar
  41. Mascia I, Fadda C, Dostálek P et al (2014) Preliminary characterization of an Italian craft durum wheat beer. J Inst Brew 120.  https://doi.org/10.1002/jib.176
  42. McCracken KE, Yoon J-Y (2016) Recent approaches for optical smartphone sensing in resource-limited settings: a brief review. Anal Methods 8:6591–6601.  https://doi.org/10.1039/C6AY01575A CrossRefGoogle Scholar
  43. McDermott ML (2016) Lowering barriers to undergraduate research through collaboration with local craft breweries. J Chem Educ 93:1543–1548.  https://doi.org/10.1021/acs.jchemed.5b00875 CrossRefGoogle Scholar
  44. Miller JN (1991) Basic statistical methods for analytical chemistry. Part 2. Calibration and regression methods. A review. Analyst 116:3.  https://doi.org/10.1039/an9911600003 CrossRefGoogle Scholar
  45. Moraes EP, da Silva NSA, de Morais C d LM et al (2014) Low-cost method for quantifying sodium in coconut water and seawater for the undergraduate analytical chemistry laboratory: flame test, a mobile phone camera, and image processing. J Chem Educ 91:1958–1960.  https://doi.org/10.1021/ed400797k CrossRefGoogle Scholar
  46. Nielsen RP, Sørensen JL, Simonsen ME, Madsen HT, Muff J, Strandgaard M, Søgaard EG (2016) Brewing as a comprehensive learning platform in chemical engineering. J Chem Educ 93:1549–1555.  https://doi.org/10.1021/acs.jchemed.5b00994 CrossRefGoogle Scholar
  47. Nordon A, Mills A, Burn RT, Cusick FM, Littlejohn D (2005) Comparison of non-invasive NIR and Raman spectrometries for determination of alcohol content of spirits. Anal Chim Acta 548:148–158.  https://doi.org/10.1016/J.ACA.2005.05.067 CrossRefGoogle Scholar
  48. Oliveira AS, Nora FMD, Mello RO, Mello PA, Tischer B, Costa AB, Barin JS (2017) One-Shot, reagent-free determination of the alcoholic content of distilled beverages by thermal infrared enthalpimetry. Talanta 171:335–340.  https://doi.org/10.1016/J.TALANTA.2017.05.011 CrossRefGoogle Scholar
  49. Oskolok KV, Shults EV, Monogarova OV, Chaplenko AA (2018) Optical molecular analysis using office flatbed photo scanner: new approaches and solutions. Talanta 178:377–383.  https://doi.org/10.1016/J.TALANTA.2017.09.049 CrossRefPubMedGoogle Scholar
  50. Pereira VR, Hosker BS (2019) Low-cost (<€5), open-source, potential alternative to commercial spectrophotometers. PLoS Biol 17:e3000321.  https://doi.org/10.1371/journal.pbio.3000321 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Pérez-Ruiz T, Martínez-Lozano C, Tomás V, Martín J (2005) Flow injection chemiluminescent determination of N-nitrosodimethylamine using photogenerated tris(2,2′-bipyridyl) ruthenium (III). Anal Chim Acta 541:67–72.  https://doi.org/10.1016/J.ACA.2004.08.051 CrossRefGoogle Scholar
  52. Phadungcharoen N, Patrojanasophon P, Opanasopit P, Ngawhirunpat T, Chinsriwongkul A, Rojanarata T (2019) Smartphone-based Ellman’s colourimetric methods for the analysis of d-penicillamine formulation and thiolated polymer. Int J Pharm 558:120–127.  https://doi.org/10.1016/J.IJPHARM.2018.12.078 CrossRefPubMedGoogle Scholar
  53. Piacentini KC, Savi GD, Olivo G, Scussel VM (2015) Quality and occurrence of deoxynivalenol and fumonisins in craft beer. Food Control 50:925–929.  https://doi.org/10.1016/J.FOODCONT.2014.10.038 CrossRefGoogle Scholar
  54. Pinyou P, Youngvises N, Jakmunee J (2011) Flow injection colorimetric method using acidic ceric nitrate as reagent for determination of ethanol. Talanta 84:745–751.  https://doi.org/10.1016/J.TALANTA.2011.01.078 CrossRefPubMedGoogle Scholar
  55. dos Santos Benedetti LP, Bezerra dos Santos V, Silva TA et al (2015) A digital image analysis method for quantification of sulfite in beverages. Anal Methods 7:7568–7573.  https://doi.org/10.1039/C5AY01372K CrossRefGoogle Scholar
  56. Poce-Fatou JA, Bethencourt M, Moreno-Dorado FJ, Palacios-Santander JM (2011) Using a flatbed scanner to measure detergency: a cost-effective undergraduate laboratory. J Chem Educ 88:1314–1317.  https://doi.org/10.1021/ed100635z CrossRefGoogle Scholar
  57. Porto ISA, Santos Neto JH, dos Santos LO, Gomes AA, Ferreira SLC (2019) Determination of ascorbic acid in natural fruit juices using digital image colorimetry. Microchem J 149:104031.  https://doi.org/10.1016/J.MICROC.2019.104031 CrossRefGoogle Scholar
  58. Prats-Montalbán JM, de Juan A, Ferrer A (2011) Multivariate image analysis: a review with applications. Chemom Intell Lab Syst 107:1–23.  https://doi.org/10.1016/J.CHEMOLAB.2011.03.002 CrossRefGoogle Scholar
  59. Rateni G, Dario P, Cavallo F et al (2017) Smartphone-based food diagnostic technologies: a review. Sensors 17:1453.  https://doi.org/10.3390/s17061453 CrossRefGoogle Scholar
  60. Rattanakit P, Maungchang R (2019) Determining iron(III) concentration in a green chemistry experiment using Phyllanthus emblica (Indian Gooseberry) extract and spectrophotometry. J Chem Educ 96:756–760.  https://doi.org/10.1021/acs.jchemed.8b00817 CrossRefGoogle Scholar
  61. Ravazzi CG, Krambeck Franco M d O, Vieira MCR, Suarez WT (2018) Smartphone application for captopril determination in dosage forms and synthetic urine employing digital imaging. Talanta 189:339–344.  https://doi.org/10.1016/J.TALANTA.2018.07.015 CrossRefPubMedGoogle Scholar
  62. Resque IS, dos Santos VB, Suarez WT (2019) An environmentally friendly analytical approach based on spot test and digital image to evaluate the conformity of bleaching products. Chem Pap:1–10.  https://doi.org/10.1007/s11696-019-00717-w CrossRefGoogle Scholar
  63. Ribeiro FCP, Oliveira AS, Araújo A, Marinho W, Schneider MP, Pinto L, Gomes AA (2019) Detection oxidative degradation in lubricating oil under storage conditions using digital images and chemometrics. Microchem J 147:622–627.  https://doi.org/10.1016/J.MICROC.2019.03.087 CrossRefGoogle Scholar
  64. Roda A, Michelini E, Zangheri M, di Fusco M, Calabria D, Simoni P (2016) Smartphone-based biosensors: a critical review and perspectives. TrAC Trends Anal Chem 79:317–325.  https://doi.org/10.1016/J.TRAC.2015.10.019 CrossRefGoogle Scholar
  65. Santos Neto JH, Porto ISA, Schneider MP, dos Santos AMP, Gomes AA, Ferreira SLC (2019) Speciation analysis based on digital image colorimetry: iron (II/III) in white wine. Talanta 194:86–89.  https://doi.org/10.1016/J.TALANTA.2018.09.102 CrossRefPubMedGoogle Scholar
  66. Santos PM, Wentzell PD, Pereira-Filho ER (2012) Scanner digital images combined with color parameters: a case study to detect adulterations in liquid cow’s milk. Food Anal Methods 5:89–95.  https://doi.org/10.1007/s12161-011-9216-2 CrossRefGoogle Scholar
  67. Santos RB d, Filoda PF, Teixeira ID et al (2019) Flow thermal infrared enthalpimetry: rapid and inexpensive determination of the alcohol content of distilled beverages. Talanta 200:67–71.  https://doi.org/10.1016/J.TALANTA.2019.03.044 CrossRefGoogle Scholar
  68. Sedwick V, Leal A, Turner D, Kanu AB (2018) Quantitative determination of aluminum in deodorant brands: a guided inquiry learning experience in quantitative analysis laboratory. J Chem Educ 95:451–455.  https://doi.org/10.1021/acs.jchemed.7b00336 CrossRefGoogle Scholar
  69. Shrivastava A, Gupta V (2011) Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron Young Sci 2:21.  https://doi.org/10.4103/2229-5186.79345 CrossRefGoogle Scholar
  70. Solana-Altabella A, Sánchez-Iranzo MH, Bueso-Bordils JI, Lahuerta-Zamora L, Mellado-Romero AM (2018) Computer vision-based analytical chemistry applied to determining iron in commercial pharmaceutical formulations. Talanta 188:349–355.  https://doi.org/10.1016/J.TALANTA.2018.06.008 CrossRefPubMedGoogle Scholar
  71. Soldat DJ, Barak P, Lepore BJ (2009) Microscale colorimetric analysis using a desktop scanner and automated digital image analysis. J Chem Educ 86:617.  https://doi.org/10.1021/ed086p617 CrossRefGoogle Scholar
  72. Somboon T, Sansuk S (2018) An instrument-free method based on visible chemical waves for quantifying the ethanol content in alcoholic beverages. Food Chem 253:300–304.  https://doi.org/10.1016/J.FOODCHEM.2018.01.168 CrossRefPubMedGoogle Scholar
  73. Song L, Liu L, Yang Y, Xi JT, Guo QH, Zhu XJ (2017) Online detection of distilled spirit quality based on laser Raman spectroscopy. J Inst Brew 123:121–129.  https://doi.org/10.1002/jib.399 CrossRefGoogle Scholar
  74. Tôrres AR, da Silva LW, de Andrade SIE et al (2011) A digital image-based method for determining of total acidity in red wines using acid–base titration without indicator. Talanta 84:601–606.  https://doi.org/10.1016/J.TALANTA.2011.02.002 CrossRefPubMedGoogle Scholar
  75. Vashist SK, Mudanyali O, Schneider EM, Zengerle R, Ozcan A (2014) Cellphone-based devices for bioanalytical sciences. Anal Bioanal Chem 406:3263–3277.  https://doi.org/10.1007/s00216-013-7473-1 CrossRefPubMedGoogle Scholar
  76. Vidal M, Garcia-Arrona R, Bordagaray A, Ostra M, Albizu G (2018) Simultaneous determination of color additives tartrazine and allura red in food products by digital image analysis. Talanta 184:58–64.  https://doi.org/10.1016/J.TALANTA.2018.02.111 CrossRefPubMedGoogle Scholar
  77. Volmer DA, Curbani L, Parker TA, Garcia J, Schultz LD, Borges EM (2017) Determination of titratable acidity in wine using potentiometric, conductometric, and photometric methods. J Chem Educ 94:1296–1302.  https://doi.org/10.1021/acs.jchemed.6b00891 CrossRefGoogle Scholar
  78. Yang R, Cheng W, Chen X, Qian Q, Zhang Q, Pan Y, Duan P, Miao P (2018) Color space transformation-based smartphone algorithm for colorimetric urinalysis. ACS Omega 3:12141–12146.  https://doi.org/10.1021/acsomega.8b01270 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Zamora LL, López PA, Fos GMA, Algarra RM, Romero AMM, Calatayud JM (2011) Quantitative colorimetric-imaging analysis of nickel in iron meteorites. Talanta 83:1575–1579.  https://doi.org/10.1016/J.TALANTA.2010.11.058 CrossRefPubMedGoogle Scholar
  80. Zhang C-Y, Lin N-B, Chai X-S, Zhong-Li, Barnes DG (2015) A rapid method for simultaneously determining ethanol and methanol content in wines by full evaporation headspace gas chromatography. Food Chem 183:169–172.  https://doi.org/10.1016/J.FOODCHEM.2015.03.048 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de QuímicaUniversidade Regional de Blumenau, FURBBlumenauBrazil
  2. 2.Núcleo BiotecnológicoUniversidade do Oeste de Santa Catarina, UNOESCVideiraBrazil

Personalised recommendations