Advertisement

Recent Progress in Rapid Analyses of Vitamins, Phenolic, and Volatile Compounds in Foods Using Vibrational Spectroscopy Combined with Chemometrics: a Review

  • Haroon Elrasheid Tahir
  • Zou XiaoboEmail author
  • Xiao Jianbo
  • Gustav Komla Mahunu
  • Shi Jiyong
  • Jun-Li Xu
  • Da-Wen Sun
Article

Abstract

Nowadays, progresses in data processing software have promoted the application of infrared (e.g., FT-IR, NIR, MIR), Raman, and hyperspectral imaging (HSI) techniques for quantitative analysis of biological material and/or aroma compounds in foods. In this review, applications of vibrational spectroscopy combined with chemometrics are summarized including analysis of total polyphenol, individual polyphenols, vitamins, and aromatic compounds in raw and some processed products. Laboratory-based and online application of vibrational spectroscopies monitoring for analysis of phenolic compounds have been described. In addition, technical challenges and future trends have been covered. Based on the literature, the near-infrared technique often has an advantage over other spectroscopy approaches and the expensive and time-consuming chemical methods such as high-performance liquid chromatography and gas chromatography. Overall, the current review suggests that vibrational spectroscopies are promising and powerful techniques that can be used for rapid and accurate determinations of food nutraceuticals and volatile compounds in both academic and industrial contexts.

Keywords

Food Infrared spectroscopy Raman spectroscopy Hyperspectral imaging technique Phenolic compounds Volatile compound 

Notes

Funding Information

This study received financial support from the National Natural Science Foundation of China (31750110458, 2017) and the China Postdoctoral Science Foundation (2017M611736, 2017).

Compliance with Ethical Standards

This article does not contain any studies with human or animal subjects.

Conflict of Interest

Haroon Elrasheid Tahir declares that he has no conflict of interest. Zou Xiaobo declares that he has no conflict of interest. Xiao Jianbo declares that she has no conflict of interest. Shi Jiyong declares that he has no conflict of interest. Gustav Komla Mahunu declares that he has no conflict of interest. Jun-Li Xu declares that he has no conflict of interest. Da-Wen Sun declares that he has no conflict of interest.

Informed Consent

Informed consent is not applicable in this study.

References

  1. Alajtal AI (2010) Application for the analysis of organic compounds and minerals of astrobiological significance. The detection and discrimination of organic compounds and mineral analogues in pure and mixed samples of astrobiological significance using Raman spectroscopy, XRD and scanning electronmicroscopy. PhD Dissertation, University of Bradford. http://hdl.handle.net/10454/4425. Accessed 2 Jan 2019
  2. Alamar PD, Caramês ETS, Poppi RJ, Pallone JAL (2016) Quality evaluation of frozen guava and yellow passion fruit pulps by NIR spectroscopy and chemometrics. Food Res Int 85:209–214.  https://doi.org/10.1016/j.foodres.2016.04.027 CrossRefPubMedGoogle Scholar
  3. Aleixandre-Tudo JL, Nieuwoudt H, Aleixandre JL, du Toit W (2018) Chemometric compositional analysis of phenolic compounds in fermenting samples and wines using different infrared spectroscopy techniques. Talanta 176:526–536.  https://doi.org/10.1016/j.talanta.2017.08.065 CrossRefPubMedGoogle Scholar
  4. Aleixandre-Tudo JL, Nieuwoudt H, du Toit W (2019) Towards on-line monitoring of phenolic content in red wine grapes: a feasibility study. Food Chem 270:322–331.  https://doi.org/10.1016/j.foodchem.2018.07.118 CrossRefPubMedGoogle Scholar
  5. Andrianjaka-Camps Z-N, Baumgartner D, Camps C, Guyer E, Arrigoni E, Carlen C (2015) Prediction of raspberries puree quality traits by Fourier transform infrared spectroscopy. LWT Food Sci Technol 63(2):1056–1062.  https://doi.org/10.1016/j.lwt.2015.04.062 CrossRefGoogle Scholar
  6. Anjos O, Santos AJA, Paixao V, Estevinho LM (2018) Physicochethical characterization of Lavandula spp. honey with FT-Raman spectroscopy. Talanta 178:43–48.  https://doi.org/10.1016/j.talanta.2017.08.099 CrossRefPubMedGoogle Scholar
  7. Apostolou T, Pascual N, Marco MP, Moschos A, Petropoulos A, Kaltsas G, Kintzios S (2014) Extraction-less, rapid assay for the direct detection of 2,4,6-trichloroanisole (TCA) in cork samples. Talanta 125:336–340.  https://doi.org/10.1016/j.talanta.2014.03.023 CrossRefPubMedGoogle Scholar
  8. Arendse E, Fawole OA, Magwaza LS, Nieuwoudt HH, Opara UL (2017) Development of calibration models for the evaluation of pomegranate aril quality by Fourier-transform near infrared spectroscopy combined with chemometrics. Biosyst Eng 159:22–32.  https://doi.org/10.1016/j.biosystemseng.2017.04.004 CrossRefGoogle Scholar
  9. Arendse E, Fawole OA, Magwaza LS, Nieuwoudt H, Opara UL (2018) Comparing the analytical performance of near and mid infrared spectrometers for evaluating pomegranate juice quality. LWT 91:180–190.  https://doi.org/10.1016/j.lwt.2018.01.035 CrossRefGoogle Scholar
  10. Ayseli MT, İpek Ayseli Y (2016) Flavors of the future: health benefits of flavor precursors and volatile compounds in plant foods. Trends Food Sci Technol 48:69–77.  https://doi.org/10.1016/j.tifs.2015.11.005 CrossRefGoogle Scholar
  11. Baeten V, Dardenne P (2002) Spectroscopy: developments in instrumentation and analysis. Grasas Aceites 53(1):45–63CrossRefGoogle Scholar
  12. Beghi R, Spinardi A, Bodria L, Mignani I, Guidetti R (2013) Apples nutraceutic properties evaluation through a visible and near-infrared portable system. Food Bioprocess Technol 6(9):2547–2554.  https://doi.org/10.1007/s11947-012-0824-7 CrossRefGoogle Scholar
  13. Betances-Salcedo E, Revilla I, Vivar-Quintana AM, Gonzalez-Martin MI (2017) Flavonoid and antioxidant capacity of propolis prediction using near infrared spectroscopy. Sensors (Basel) 17(7).  https://doi.org/10.3390/s17071647
  14. Bianchi F, Careri M, Musci M (2005) Volatile norisoprenoids as markers of botanical origin of Sardinian strawberry-tree (Arbutus unedo L.) honey: characterisation of aroma compounds by dynamic headspace extraction and gas chromatography–mass spectrometry. Food Chem 89(4):527–532.  https://doi.org/10.1016/j.foodchem.2004.03.009 CrossRefGoogle Scholar
  15. Blanco M, Coello J, Iturriaga H, Maspoch S, de la Pezuela C (1993) Determination of ascorbic acid in pharmaceutical preparations by near infrared reflectance spectroscopy. Talanta 40(11):1671–1676.  https://doi.org/10.1016/0039-9140(93)80083-4 CrossRefPubMedGoogle Scholar
  16. Blanco-Díaz MT, Del Río-Celestino M, Martínez-Valdivieso D, Font R (2014) Use of visible and near-infrared spectroscopy for predicting antioxidant compounds in summer squash (Cucurbita pepo ssp pepo). Food Chem 164:301–308.  https://doi.org/10.1016/j.foodchem.2014.05.019 CrossRefPubMedGoogle Scholar
  17. Boido E, Fariña L, Carrau F, Dellacassa E, Cozzolino D (2013) Characterization of glycosylated aroma compounds in tannat grapes and feasibility of the near infrared spectroscopy application for their prediction. Food Anal Methods 6(1):100–111.  https://doi.org/10.1007/s12161-012-9423-5 CrossRefGoogle Scholar
  18. Bumbrah GS, Sharma RM (2016) Raman spectroscopy – basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egypt J Forensic Sci 6(3):209–215.  https://doi.org/10.1016/j.ejfs.2015.06.001 CrossRefGoogle Scholar
  19. Bureau S, Cozzolino D, Clark CJ (2019) Contributions of Fourier-transform mid infrared (FT-MIR) spectroscopy to the study of fruit and vegetables: a review. Postharvest Biol Technol 148:1–14.  https://doi.org/10.1016/j.postharvbio.2018.10.003 CrossRefGoogle Scholar
  20. Burns DA, Ciurczak EW (2001) Handbook of near-infrared analysis, 3rd edn. CRC press. pp. 25-38Google Scholar
  21. Canan C, Banu O (2017) Monitoring of wine process and prediction of its parameters with mid-infrared spectroscopy. J Food Process Eng 40(1):e12280.  https://doi.org/10.1111/jfpe.12280 CrossRefGoogle Scholar
  22. Caporaso N, Whitworth MB, Fowler MS, Fisk ID (2018) Hyperspectral imaging for non-destructive prediction of fermentation index, polyphenol content and antioxidant activity in single cocoa beans. Food Chem 258:343–351.  https://doi.org/10.1016/j.foodchem.2018.03.039 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Caramês ETS, Alamar PD, Poppi RJ, Pallone JAL (2017a) Quality control of cashew apple and guava nectar by near infrared spectroscopy. J Food Compos Anal 56:41–46.  https://doi.org/10.1016/j.jfca.2016.12.002 CrossRefGoogle Scholar
  24. Caramês ETS, Alamar PD, Poppi RJ, Pallone JAL (2017b) Rapid assessment of total phenolic and anthocyanin contents in grape juice using infrared spectroscopy and multivariate calibration. Food Anal Methods 10(5):1609–1615.  https://doi.org/10.1007/s12161-016-0721-1 CrossRefGoogle Scholar
  25. Cayuela JA, García JF (2017) Sorting olive oil based on alpha-tocopherol and total tocopherol content using near-infra-red spectroscopy (NIRS) analysis. J Food Eng 202:79–88.  https://doi.org/10.1016/j.jfoodeng.2017.01.015 CrossRefGoogle Scholar
  26. Chen S, Zhang F, Ning J, Liu X, Zhang Z, Yang S (2015) Predicting the anthocyanin content of wine grapes by NIR hyperspectral imaging. Food Chem 172:788–793.  https://doi.org/10.1016/j.foodchem.2014.09.119 CrossRefPubMedGoogle Scholar
  27. Cheng J-H, Nicolai B, Sun D-W (2017) Hyperspectral imaging with multivariate analysis for technological parameters prediction and classification of muscle foods: a review. Meat Sci 123:182–191.  https://doi.org/10.1016/j.meatsci.2016.09.017 CrossRefPubMedGoogle Scholar
  28. Cigic IK, Prosen H (2009) An overview of conventional and emerging analytical methods for the determination of mycotoxins. Int J Mol Sci 10(1):62–115.  https://doi.org/10.3390/ijms10010062 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Coates J (2000) Interpretation of infrared spectra, a practical approach. Encycl Anal Chem 12:10815–10837Google Scholar
  30. D’Amico P, Armani A, Gianfaldoni D, Guidi A (2016) New provisions for the labelling of fishery and aquaculture products: difficulties in the implementation of Regulation (EU) n. 1379/2013. Mar Policy 71:147–156.  https://doi.org/10.1016/j.marpol.2016.05.026 CrossRefGoogle Scholar
  31. da Silva C, Prasniewski A, Calegari MA, de Lima VA, Oldoni TLC (2018) Determination of total phenolic compounds and antioxidant activity of ethanolic extracts of propolis using ATR–FT-IR spectroscopy and chemometrics. Food Anal Methods 11:2013–2021.  https://doi.org/10.1007/s12161-018-1161-x CrossRefGoogle Scholar
  32. de Oliveira GA, de Castilhos F, Renard CM-GC, Bureau S (2014) Comparison of NIR and MIR spectroscopic methods for determination of individual sugars, organic acids and carotenoids in passion fruit. Food Res Int 60:154–162.  https://doi.org/10.1016/j.foodres.2013.10.051 CrossRefGoogle Scholar
  33. de Oliveira IRN, Roque JV, Maia MP, Stringheta PC, Teófilo RF (2018) New strategy for determination of anthocyanins, polyphenols and antioxidant capacity of Brassica oleracea liquid extract using infrared spectroscopies and multivariate regression. Spectrochim Acta A Mol Biomol Spectrosc 194:172–180.  https://doi.org/10.1016/j.saa.2018.01.006 CrossRefPubMedGoogle Scholar
  34. de Toledo TA, da Silva LE, Botelho TC, Ramos RJ, de Souza Jr PT, Teixeira AMR, Freire PTC, Bento RRF (2012) Characterization of flavonoid 3-methoxyquercetin performed by FT-IR and FT-Raman spectroscopies and DFT calculations. J Mol Struct 1029:22–27.  https://doi.org/10.1016/j.molstruc.2012.06.058 CrossRefGoogle Scholar
  35. Deak K, Szigedi T, Pek Z, Baranowski P, Helyes L (2015) Carotenoid determination in tomato juice using near infrared spectroscopy. Int Agrophys 29(3):275–282.  https://doi.org/10.1515/intag-2015-0032 CrossRefGoogle Scholar
  36. Ding X, Guo Y, Ni Y, Kokot S (2016) A novel NIR spectroscopic method for rapid analyses of lycopene, total acid, sugar, phenols and antioxidant activity in dehydrated tomato samples. Vib Spectrosc 82:1–9.  https://doi.org/10.1016/j.vibspec.2015.10.004 CrossRefGoogle Scholar
  37. Dong W, Ni Y, Kokot S (2013) A near-infrared reflectance spectroscopy method for direct analysis of several chemical components and properties of fruit, for example, Chinese Hawthorn. J Agric Food Chem 61(3):540–546.  https://doi.org/10.1021/jf305272s CrossRefPubMedGoogle Scholar
  38. Dong W, Ni Y, Kokot S (2014) A novel near-infrared spectroscopy and chemometrics method for rapid analysis of several chemical components and antioxidant activity of mint (Mentha haplocalyx Brig.) samples. Appl Spectrosc 68(2):245–254.  https://doi.org/10.1366/13-07091 CrossRefPubMedGoogle Scholar
  39. dos Santos CAT, Páscoa RNMJ, Lopes JA (2017) A review on the application of vibrational spectroscopy in the wine industry: from soil to bottle. TrAC Trends Anal Chem 88:100–118.  https://doi.org/10.1016/j.trac.2016.12.012 CrossRefGoogle Scholar
  40. Dutta A (2017) Chapter 4 - Fourier transform infrared spectroscopy. In Thomas S, Thomas R, Zachariah AK, Mishra RK (Eds) Spectroscopic methods for nanomaterials characterization. Elsevier, pp. 73-93.Google Scholar
  41. Erasmus RM, Comins JD (2018) Raman scattering. In: Ida N, Meyendorf N (eds) Handbook of Advanced Non-Destructive Evaluation. Springer International Publishing, Cham, pp 1–54Google Scholar
  42. Eravuchira PJ, El-Abassy RM, Deshpande S, Matei MF, Mishra S, Tandon P, … Materny A (2012) Raman spectroscopic characterization of different regioisomers of monoacyl and diacyl chlorogenic acid. Vib Spectrosc 61:10-16. doi: https://doi.org/10.1016/j.vibspec.2012.02.009
  43. Ercioglu E, Velioglu HM, Boyaci IH (2018) Determination of terpenoid contents of aromatic plants using NIRS. Talanta 178:716–721.  https://doi.org/10.1016/j.talanta.2017.10.017 CrossRefPubMedGoogle Scholar
  44. Fernández Pierna, J. A., Manley, M., Dardenne, P., Downey, G., & Baeten, V. (2018). Spectroscopic Technique: Fourier Transform (FT) Near-Infrared Spectroscopy (NIR) and Microscopy (NIRM). 2and edn. Academic Press, pp. 103-138.Google Scholar
  45. Ferrer-Gallego R, Hernández-Hierro JM, Rivas-Gonzalo JC, Escribano-Bailón MT (2011) Determination of phenolic compounds of grape skins during ripening by NIR spectroscopy. LWT Food Sci Technol 44(4):847–853.  https://doi.org/10.1016/j.lwt.2010.12.001 CrossRefGoogle Scholar
  46. Frizon CNT, Oliveira GA, Perussello CA, Peralta-Zamora PG, Camlofski AMO, Rossa ÜB, Hoffmann-Ribani R (2015) Determination of total phenolic compounds in yerba mate (Ilex paraguariensis) combining near infrared spectroscopy (NIR) and multivariate analysis. LWT Food Sci Technol 60(2, Part 1):795–801.  https://doi.org/10.1016/j.lwt.2014.10.030 CrossRefGoogle Scholar
  47. Fu X, He X, Xu H, Ying Y (2016) Nondestructive and rapid assessment of intact tomato freshness and lycopene content based on a miniaturized raman spectroscopic system and colorimetry. Food Anal Methods 9(9):2501–2508.  https://doi.org/10.1007/s12161-016-0440-7 CrossRefGoogle Scholar
  48. Gallie DR (2013) Increasing vitamin C content in plant foods to improve their nutritional value—successes and challenges. Nutrients 5(9):3424–3446.  https://doi.org/10.3390/nu5093424 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Gao F, Xu L, Zhang Y, Yang Z, Han L, Liu X (2018) Analytical Raman spectroscopic study for discriminant analysis of different animal-derived feedstuff: Understanding the high correlation between Raman spectroscopy and lipid characteristics. Food Chem 240:989–996.  https://doi.org/10.1016/j.foodchem.2017.07.143 CrossRefPubMedGoogle Scholar
  50. Garde-Cerdán T, Lorenzo C, Zalacain A, Alonso GL, Salinas MR (2012) Using near infrared spectroscopy to determine haloanisoles and halophenols in barrel aged red wines. LWT Food Sci Technol 46(2):401–405.  https://doi.org/10.1016/j.lwt.2011.12.012 CrossRefGoogle Scholar
  51. Genisheva Z, Quintelas C, Mesquita DP, Ferreira EC, Oliveira JM, Amaral AL (2018) New PLS analysis approach to wine volatile compounds characterization by near infrared spectroscopy (NIR). Food Chem 246:172–178.  https://doi.org/10.1016/j.foodchem.2017.11.015 CrossRefPubMedGoogle Scholar
  52. Giovanelli G, Sinelli N, Beghi R, Guidetti R, Casiraghi E (2014) NIR spectroscopy for the optimization of postharvest apple management. Postharvest Biol Technol 87:13–20.  https://doi.org/10.1016/j.postharvbio.2013.07.041 CrossRefGoogle Scholar
  53. Gomes V, Fernandes A, Martins-Lopes P, Pereira L, Mendes Faia A, Melo-Pinto P (2017) Characterization of neural network generalization in the determination of pH and anthocyanin content of wine grape in new vintages and varieties. Food Chem 218:40–46.  https://doi.org/10.1016/j.foodchem.2016.09.024 CrossRefPubMedGoogle Scholar
  54. González-Martín I, Hernández-Hierro JM, González-Pérez C, Revilla I, Vivar-Quintana A, Lobos Ortega I (2014) Potential of near infrared spectroscopy for the analysis of volatile components in cheeses. LWT Food Sci Technol 55(2):666–673.  https://doi.org/10.1016/j.lwt.2013.10.008 CrossRefGoogle Scholar
  55. Hernández-Hierro JM, Nogales-Bueno J, Rodríguez-Pulido FJ, Heredia FJ (2013) Feasibility study on the use of near-infrared hyperspectral imaging for the screening of anthocyanins in intact grapes during ripening. J Agric Food Chem 61(41):9804–9809.  https://doi.org/10.1021/jf4021637 CrossRefPubMedGoogle Scholar
  56. Hu Y, Pan ZJ, Liao W, Li J, Gruget P, Kitts DD, Lu X (2016) Determination of antioxidant capacity and phenolic content of chocolate by attenuated total reflectance-Fourier transformed-infrared spectroscopy. Food Chem 202:254–261.  https://doi.org/10.1016/j.foodchem.2016.01.130 CrossRefPubMedGoogle Scholar
  57. Huang L, Zhou Y, Meng L, Wu D, He Y (2017) Comparison of different CCD detectors and chemometrics for predicting total anthocyanin content and antioxidant activity of mulberry fruit using visible and near infrared hyperspectral imaging technique. Food Chem 224:1–10.  https://doi.org/10.1016/j.foodchem.2016.12.037 CrossRefPubMedGoogle Scholar
  58. Inácio MRC, de Lima KMG, Lopes VG, Pessoa JDC, de Almeida Teixeira GH (2013) Total anthocyanin content determination in intact açaí (Euterpe oleracea Mart.) and palmitero-juçara (Euterpe edulis Mart.) fruit using near infrared spectroscopy (NIR) and multivariate calibration. Food Chem 136(3):1160–1164.  https://doi.org/10.1016/j.foodchem.2012.09.046 CrossRefPubMedGoogle Scholar
  59. Inarejos-García AM, Gómez-Alonso S, Fregapane G, Salvador MD (2013) Evaluation of minor components, sensory characteristics and quality of virgin olive oil by near infrared (NIR) spectroscopy. Food Res Int 50(1):250–258.  https://doi.org/10.1016/j.foodres.2012.10.029 CrossRefGoogle Scholar
  60. Jha, S. N. (2010). Near Infrared Spectroscopy. In S. N. Jha (Ed.), Nondestructive Evaluation of Food Quality: Theory and Practice, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 141-212.Google Scholar
  61. Kadiroğlu P, Aydemir LY, Akcakaya FG (2018) Prediction of functional properties of registered chickpea samples using FT-IR spectroscopy and chemometrics. LWT 93:463–469.  https://doi.org/10.1016/j.lwt.2018.03.080 CrossRefGoogle Scholar
  62. Karoui, R. (2018). Spectroscopic Technique: Mid-Infrared (MIR) and Fourier Transform Mid-Infrared (FT-MIR) Spectroscopies. 2and edn. Academic Press, pp. 23-50Google Scholar
  63. Kezhu T, Yuhua C, Weixian S, Xiaoda C (2014) Detection of isoflavones content in soybean based on Hyperspectral Imaging Technology. Sens Transducers 169(4):55Google Scholar
  64. Khulal U, Zhao J, Hu W, Chen Q (2016) Nondestructive quantifying total volatile basic nitrogen (TVB-N) content in chicken using hyperspectral imaging (HSI) technique combined with different data dimension reduction algorithms. Food Chem 197:1191–1199.  https://doi.org/10.1016/j.foodchem.2015.11.084 CrossRefPubMedGoogle Scholar
  65. Kim Y-N, Cho Y-O (2015) Vitamin E status of 20-to 59-year-old adults living in the Seoul metropolitan area of South Korea. Nutr Res Pract 9(2):192–198.  https://doi.org/10.4162/nrp.2015.9.2.192 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Kizil, R., & Irudayaraj, J. (2018). Spectroscopic Technique: Fourier Transform Raman (FT-Raman) Spectroscopy. 2and edn. Academic Press, pp. 193-217Google Scholar
  67. Krähmer A, Böttcher C, Rode A, Nothnagel T, Schulz H (2016) Quantifying biochemical quality parameters in carrots (Daucus carota L.) – FT-Raman spectroscopy as efficient tool for rapid metabolite profiling. Food Chem 212:495–502.  https://doi.org/10.1016/j.foodchem.2016.05.176 CrossRefPubMedGoogle Scholar
  68. Kramchote S, Nakano K, Kanlayanarat S, Ohashi S, Takizawa K, Bai G (2014) Rapid determination of cabbage quality using visible and near-infrared spectroscopy. LWT Food Sci Technol 59(2, Part 1):695–700.  https://doi.org/10.1016/j.lwt.2014.07.009 CrossRefGoogle Scholar
  69. Lafhal S, Vanloot P, Bombarda I, Kister J, Dupuy N (2016) Chemometric analysis of French lavender and lavandin essential oils by near infrared spectroscopy. Ind Crop Prod 80:156–164.  https://doi.org/10.1016/j.indcrop.2015.11.017 CrossRefGoogle Scholar
  70. Lanfer-Marquez UM, Barros RMC, Sinnecker P (2005) Antioxidant activity of chlorophylls and their derivatives. Food Res Int 38(8):885–891.  https://doi.org/10.1016/j.foodres.2005.02.012 CrossRefGoogle Scholar
  71. Lawaetz AJ, Christensen SMU, Clausen SK, Jørnsgaard B, Rasmussen SK, Andersen SB, Rinnan Å (2016) Fast, cross cultivar determination of total carotenoids in intact carrot tissue by Raman spectroscopy and partial least squares calibration. Food Chem 204:7–13.  https://doi.org/10.1016/j.foodchem.2016.02.107 CrossRefPubMedGoogle Scholar
  72. Lee M-S, Hwang Y-S, Lee J, Choung M-G (2014) The characterization of caffeine and nine individual catechins in the leaves of green tea (Camellia sinensis L.) by near-infrared reflectance spectroscopy. Food Chem 158:351–357.  https://doi.org/10.1016/j.foodchem.2014.02.127 CrossRefPubMedGoogle Scholar
  73. Li Y-S, Church JS (2014) Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials. J Food Drug Anal 22(1):29–48.  https://doi.org/10.1016/j.jfda.2014.01.003 CrossRefPubMedGoogle Scholar
  74. Li X, Jin J, Sun C, Ye D, Liu Y (2019) Simultaneous determination of six main types of lipid-soluble pigments in green tea by visible and near-infrared spectroscopy. Food Chem 270:236–242.  https://doi.org/10.1016/j.foodchem.2018.07.039 CrossRefPubMedGoogle Scholar
  75. Liang N, Lu X, Hu Y, Kitts DD (2016) Application of attenuated total reflectance–Fourier transformed infrared (ATR-FTIR) spectroscopy to determine the chlorogenic acid isomer profile and antioxidant capacity of coffee beans. J Agric Food Chem 64(3):681–689.  https://doi.org/10.1021/acs.jafc.5b05682 CrossRefPubMedGoogle Scholar
  76. Liu C, Liu W, Chen W, Yang J, Zheng L (2015a) Feasibility in multispectral imaging for predicting the content of bioactive compounds in intact tomato fruit. Food Chem 173:482–488.  https://doi.org/10.1016/j.foodchem.2014.10.052 CrossRefPubMedGoogle Scholar
  77. Liu C, Yang SX, Deng L (2015b) Determination of internal qualities of Newhall navel oranges based on NIR spectroscopy using machine learning. J Food Eng 161:16–23.  https://doi.org/10.1016/j.jfoodeng.2015.03.022 CrossRefGoogle Scholar
  78. Liu Y, Sun Y, Xie A, Yu H, Yin Y, Li X, Duan X (2017) Potential of hyperspectral imaging for rapid prediction of anthocyanin content of purple-fleshed sweet potato slices during drying process. Food Anal Methods 10(12):3836–3846.  https://doi.org/10.1007/s12161-017-0950-y CrossRefGoogle Scholar
  79. Ma L, Zhang Z, Zhao X, Zhang S, Lu H (2016) The rapid determination of total polyphenols content and antioxidant activity in Dendrobium officinale using near-infrared spectroscopy. Anal Methods 8(23):4584–4589.  https://doi.org/10.1039/C6AY00542J CrossRefGoogle Scholar
  80. Magalhães LM, Machado S, Segundo MA, Lopes JA, Páscoa RNMJ (2016) Rapid assessment of bioactive phenolics and methylxanthines in spent coffee grounds by FT-NIR spectroscopy. Talanta 147:460–467.  https://doi.org/10.1016/j.talanta.2015.10.022 CrossRefPubMedGoogle Scholar
  81. Maniwara P, Nakano K, Boonyakiat D, Ohashi S, Hiroi M, Tohyama T (2014) The use of visible and near infrared spectroscopy for evaluating passion fruit postharvest quality. J Food Eng 143:33–43.  https://doi.org/10.1016/j.jfoodeng.2014.06.028 CrossRefGoogle Scholar
  82. Mariani NCT, de Almeida Teixeira GH, de Lima KMG, Morgenstern TB, Nardini V, Júnior LCC (2015) NIRS and iSPA-PLS for predicting total anthocyanin content in jaboticaba fruit. Food Chem 174:643–648.  https://doi.org/10.1016/j.foodchem.2014.11.008 CrossRefPubMedGoogle Scholar
  83. Marrassini C, Idrissi A, De Waele I, Smail K, Tchouar N, Moreau M, Mezzetti A (2015) Organic solvent–luteolin interactions studied by FT-Raman, Vis-Raman, UV-Raman spectroscopy and DFT calculations. J Mol Liq 205:2–8.  https://doi.org/10.1016/j.molliq.2014.08.014 CrossRefGoogle Scholar
  84. Martelo-Vidal MJ, Vázquez M (2014) Determination of polyphenolic compounds of red wines by UV–VIS–NIR spectroscopy and chemometrics tools. Food Chem 158:28–34.  https://doi.org/10.1016/j.foodchem.2014.02.080 CrossRefPubMedGoogle Scholar
  85. Martí R, Roselló S, Cebolla-Cornejo J (2016) Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. Cancers 8(6):58.  https://doi.org/10.3390/cancers8060058 CrossRefPubMedCentralGoogle Scholar
  86. Martínez-Valdivieso D, Font R, Blanco-Díaz MT, Moreno-Rojas JM, Gómez P, Alonso-Moraga Á, Del Río-Celestino M (2014) Application of near-infrared reflectance spectroscopy for predicting carotenoid content in summer squash fruit. Comput Electron Agric 108:71–79.  https://doi.org/10.1016/j.compag.2014.07.003 CrossRefGoogle Scholar
  87. Moncada GW, González Martín MI, Escuredo O, Fischer S, Míguez M (2013) Multivariate calibration by near infrared spectroscopy for the determination of the vitamin E and the antioxidant properties of quinoa. Talanta 116:65–70.  https://doi.org/10.1016/j.talanta.2013.04.079 CrossRefPubMedGoogle Scholar
  88. Mora-Ruiz ME, Reboredo-Rodríguez P, Salvador MD, González-Barreiro C, Cancho-Grande B, Simal-Gándara J, Fregapane G (2017) Assessment of polar phenolic compounds of virgin olive oil by NIR and mid-IR spectroscopy and their impact on quality. Eur J Lipid Sci Technol 119(1):1600099.  https://doi.org/10.1002/ejlt.201600099 CrossRefGoogle Scholar
  89. Nogales-Bueno J, Hernández-Hierro JM, Rodríguez-Pulido FJ, Heredia FJ (2014) Determination of technological maturity of grapes and total phenolic compounds of grape skins in red and white cultivars during ripening by near infrared hyperspectral image: a preliminary approach. Food Chem 152:586–591.  https://doi.org/10.1016/j.foodchem.2013.12.030 CrossRefPubMedGoogle Scholar
  90. Nordey T, Joas J, Davrieux F, Génard M, Léchaudel M (2014) Non-destructive prediction of color and pigment contents in mango peel. Sci Hortic 171:37–44.  https://doi.org/10.1016/j.scienta.2014.01.025 CrossRefGoogle Scholar
  91. Osborne, B. G. (2006). Near-Infrared Spectroscopy in Food Analysis. Encyclopedia of Analytical Chemistry. John Wiley & Sons, Ltd. EnglandGoogle Scholar
  92. Ozaki, Y., McClure, W.F. and Christy, A.A. eds., (2006). Near-infrared spectroscopy in food science and technology. John Wiley & Sons.Google Scholar
  93. Pallone JAL, Caramês ET d S, Alamar PD (2018) Green analytical chemistry applied in food analysis: alternative techniques. Curr Opin Food Sci 22:115–121.  https://doi.org/10.1016/j.cofs.2018.01.009 CrossRefGoogle Scholar
  94. Pavia L, Lampman GM (1996) Kriz, Introduction to spectroscopy. Harcourt Brace College Publishers, New YorkGoogle Scholar
  95. Peng B, Ge N, Cui L, Zhao H (2016) Monitoring of alcohol strength and titratable acidity of apple wine during fermentation using near-infrared spectroscopy. LWT Food Sci Technol 66:86–92.  https://doi.org/10.1016/j.lwt.2015.10.018 CrossRefGoogle Scholar
  96. Pissard A, Pierna JAF, Baeten V, Sinnaeve G, Lognay G, Mouteau A, … Lateur M (2013) Non-destructive measurement of vitamin C, total polyphenol and sugar content in apples using near-infrared spectroscopy. J Sci Food Agric 93(2):238-244. doi: https://doi.org/10.1002/jsfa.5779
  97. Pu Y-Y, Feng Y-Z, Sun D-W (2015) Recent progress of hyperspectral imaging on quality and safety inspection of fruits and vegetables: a review. Compr Rev Food Sci Food Saf 14(2):176–188.  https://doi.org/10.1111/1541-4337.12123 CrossRefGoogle Scholar
  98. Rasines-Perea Z, Prieto-Perea N, Romera-Fernández M, Berrueta LA, Gallo B (2015) Fast determination of anthocyanins in red grape musts by Fourier transform mid-infrared spectroscopy and partial least squares regression. Eur Food Res Technol 240(5):897–908.  https://doi.org/10.1007/s00217-014-2394-6 CrossRefGoogle Scholar
  99. Reich G (2005) Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications. Adv Drug Deliv Rev 57(8):1109–1143.  https://doi.org/10.1016/j.addr.2005.01.020 CrossRefPubMedGoogle Scholar
  100. Revilla I, Vivar-Quintana AM, González-Martín I, Escuredo O, Seijo C (2017) The potential of near infrared spectroscopy for determining the phenolic, antioxidant, color and bactericide characteristics of raw propolis. Microchem J 134:211–217.  https://doi.org/10.1016/j.microc.2017.06.006 CrossRefGoogle Scholar
  101. Rizk EM, El-Kady AT, El-Bialy AR (2014) Charactrization of carotenoids (lyco-red) extracted from tomato peels and its uses as natural colorants and antioxidants of ice cream. Ann Agric Sci 59(1):53–61.  https://doi.org/10.1016/j.aoas.2014.06.008 CrossRefGoogle Scholar
  102. Rungpichayapichet P, Mahayothee B, Khuwijitjaru P, Nagle M, Müller J (2015) Non-destructive determination of β-carotene content in mango by near-infrared spectroscopy compared with colorimetric measurements. J Food Compos Anal 38:32–41.  https://doi.org/10.1016/j.jfca.2014.10.013 CrossRefGoogle Scholar
  103. Sebben JA, da Silveira Espindola J, Ranzan L, Fernandes de Moura N, Trierweiler LF, Trierweiler JO (2018) Development of a quantitative approach using Raman spectroscopy for carotenoids determination in processed sweet potato. Food Chem 245:1224–1231.  https://doi.org/10.1016/j.foodchem.2017.11.086 CrossRefPubMedGoogle Scholar
  104. Sekine R, Robertson EG, McNaughton D (2011) Raman, infrared and computational analysis of genistein and its methoxy derivatives. Vib Spectrosc 57(2):306–314.  https://doi.org/10.1016/j.vibspec.2011.09.005 CrossRefGoogle Scholar
  105. Sen I, Ozturk B, Tokatli F, Ozen B (2016) Combination of visible and mid-infrared spectra for the prediction of chemical parameters of wines. Talanta 161:130–137.  https://doi.org/10.1016/j.talanta.2016.08.057 CrossRefPubMedGoogle Scholar
  106. Shahidi F, Zhong Y (2015) Measurement of antioxidant activity. J Funct Foods 18 Part B:757–781.  https://doi.org/10.1016/j.jff.2015.01.047 CrossRefGoogle Scholar
  107. Shan J, Suzuki T, Suhandy D, Ogawa Y, Kondo N (2014) Chlorogenic acid (CGA) determination in roasted coffee beans by near infrared (NIR) spectroscopy. Eng Agric Environ Food 7(4):139–142.  https://doi.org/10.1016/j.eaef.2014.08.003 CrossRefGoogle Scholar
  108. Silva SD, Feliciano RP, Boas LV, Bronze MR (2014) Application of FTIR-ATR to Moscatel dessert wines for prediction of total phenolic and flavonoid contents and antioxidant capacity. Food Chem 150:489–493.  https://doi.org/10.1016/j.foodchem.2013.11.028 CrossRefPubMedGoogle Scholar
  109. Skoog, D. A., Holler, F. J., & Crouch, S. R. (2017). Principles of Instrumental Analysis. 7th Edition. Cengage learning Asia Pte Ltd, SingaporeGoogle Scholar
  110. Smith, E., & Dent, G. (2019). Modern Raman spectroscopy: a practical approach. 2and edn Wiley, John Wiley & Sons. EnglandGoogle Scholar
  111. Su W-H, Sun D-W (2018a) Fourier transform infrared and raman and hyperspectral imaging techniques for quality determinations of powdery foods: a review. Compr Rev Food Sci Food Saf 17(1):104–122.  https://doi.org/10.1111/1541-4337.12314 CrossRefGoogle Scholar
  112. Su WH, Sun DW (2018b) Multispectral imaging for plant food quality analysis and visualization. Compr Rev Food Sci Food Saf 17(1):220–239CrossRefGoogle Scholar
  113. Sun-Waterhouse D, Wadhwa SS (2013) Industry-relevant approaches for minimising the bitterness of bioactive compounds in functional foods: a review. Food Bioprocess Technol 6(3):607–627.  https://doi.org/10.1007/s11947-012-0829-2 CrossRefGoogle Scholar
  114. Tahir HE, Xiaobo Z, Jiyong S, Mariod AA, Wiliam T (2016a) Rapid determination of antioxidant compounds and antioxidant activity of Sudanese Karkade (Hibiscus sabdariffa L.) using near infrared spectroscopy. Food Anal Methods 9(5):1228–1236CrossRefGoogle Scholar
  115. Tahir HE, Xiaobo Z, Tinting S, Jiyong S, Mariod AA (2016b) Near-infrared (NIR) spectroscopy for rapid measurement of antioxidant properties and discrimination of Sudanese honeys from different botanical Origin. Food Anal Methods 9(9):2631–2641.  https://doi.org/10.1007/s12161-016-0453-2 CrossRefGoogle Scholar
  116. Tahir HE, Xiaobo Z, Xiaowei H, Jiyong S, Mariod AA (2016c) Discrimination of honeys using colorimetric sensor arrays, sensory analysis and gas chromatography techniques. Food Chem 206:37–43.  https://doi.org/10.1016/j.foodchem.2016.03.032 CrossRefPubMedGoogle Scholar
  117. Tahir HE, Xiaobo Z, Zhihua L, Jiyong S, Zhai X, Wang S, Mariod AA (2017) Rapid prediction of phenolic compounds and antioxidant activity of Sudanese honey using Raman and Fourier transform infrared (FT-IR) spectroscopy. Food Chem 226(Supplement C):202–211.  https://doi.org/10.1016/j.foodchem.2017.01.024 CrossRefPubMedGoogle Scholar
  118. Teixeira dos Santos CA, Páscoa RNMJ, Porto PALS, Cerdeira AL, González-Sáiz JM, Pizarro C, Lopes JA (2018) Raman spectroscopy for wine analyses: a comparison with near and mid infrared spectroscopy. Talanta 186:306–314.  https://doi.org/10.1016/j.talanta.2018.04.075 CrossRefPubMedGoogle Scholar
  119. Tingting S, Xiaobo Z, Jiyong S, Zhihua L, Xiaowei H, Yiwei X, Wu C (2016) Determination geographical origin and flavonoids content of goji berry using near-infrared spectroscopy and chemometrics. Food Anal Methods 9(1):68–79.  https://doi.org/10.1007/s12161-015-0175-x CrossRefGoogle Scholar
  120. Tondi G, Petutschnigg A (2015) Middle infrared (ATR FT-MIR) characterization of industrial tannin extracts. Ind Crop Prod 65:422–428.  https://doi.org/10.1016/j.indcrop.2014.11.005 CrossRefGoogle Scholar
  121. Uncu O, Ozen B (2015) Prediction of various chemical parameters of olive oils with Fourier transform infrared spectroscopy. LWT Food Sci Technol 63(2):978–984.  https://doi.org/10.1016/j.lwt.2015.05.002 CrossRefGoogle Scholar
  122. Viegas TR, Mata ALML, Duarte MML, Lima KMG (2016) Determination of quality attributes in wax jambu fruit using NIRS and PLS. Food Chem 190:1–4.  https://doi.org/10.1016/j.foodchem.2015.05.063 CrossRefPubMedGoogle Scholar
  123. Williams PC, Stevensen SG (1990) Near-infrared reflectance analysis: food industry applications. Trends Food Sci Technol 1:44–48.  https://doi.org/10.1016/0924-2244(90)90030-3 CrossRefGoogle Scholar
  124. Wojciechowski C, Dupuy N, Ta CD, Huvenne JP, Legrand P (1998) Quantitative analysis of water-soluble vitamins by ATR-FTIR spectroscopy. Food Chem 63(1):133–140.  https://doi.org/10.1016/S0308-8146(97)00138-6 CrossRefGoogle Scholar
  125. Wu Z, Xu E, Long J, Pan X, Xu X, Jin Z, Jiao A (2016) Comparison between ATR-IR, Raman, concatenated ATR-IR and Raman spectroscopy for the determination of total antioxidant capacity and total phenolic content of Chinese rice wine. Food Chem 194:671–679.  https://doi.org/10.1016/j.foodchem.2015.08.071 CrossRefPubMedGoogle Scholar
  126. Xia, F., Li, C., Zhao, N., Li, H., Chang, Q., Liu, X., … Pan, R. (2018). Rapid determination of active compounds and antioxidant activity of okra seeds using Fourier transform near infrared (FT-NIR) spectroscopy. Molecules 23(3):550.Google Scholar
  127. Xiaowei H, Xiaobo Z, Jiewen Z, Jiyong S, Xiaolei Z, Holmes M (2014) Measurement of total anthocyanins content in flowering tea using near infrared spectroscopy combined with ant colony optimization models. Food Chem 164:536–543.  https://doi.org/10.1016/j.foodchem.2014.05.072 CrossRefPubMedGoogle Scholar
  128. Yahui L, Xiaobo Z, Tingting S, Jiyong S, Jiewen Z, Holmes M (2017) Determination of geographical origin and anthocyanin content of black goji berry (Lycium ruthenicum Murr.) Using near-infrared spectroscopy and chemometrics. Food Anal Methods 10(4):1034–1044.  https://doi.org/10.1007/s12161-016-0666-4 CrossRefGoogle Scholar
  129. Yang H, Irudayaraj J (2002) Rapid determination of vitamin c by NIR, MIR and FT-Raman techniques. J Pharm Pharmacol 54(9):1247–1255.  https://doi.org/10.1211/002235702320402099 CrossRefPubMedGoogle Scholar
  130. Yang Y-C, Sun D-W, Pu H, Wang N-N, Zhu Z (2015) Rapid detection of anthocyanin content in lychee pericarp during storage using hyperspectral imaging coupled with model fusion. Postharvest Biol Technol 103:55–65.  https://doi.org/10.1016/j.postharvbio.2015.02.008 CrossRefGoogle Scholar
  131. Zhang N, Liu X, Jin X, Li C, Wu X, Yang S, Ning J, Yanne P (2017) Determination of total iron-reactive phenolics, anthocyanins and tannins in wine grapes of skins and seeds based on near-infrared hyperspectral imaging. Food Chem 237:811–817.  https://doi.org/10.1016/j.foodchem.2017.06.007 CrossRefPubMedGoogle Scholar
  132. Žilić S, Janković M, Basić Z, Vančetović J, Maksimović V (2016) Antioxidant activity, phenolic profile, chlorophyll and mineral matter content of corn silk (Zea mays L): comparison with medicinal herbs. J Cereal Sci 69:363–370.  https://doi.org/10.1016/j.jcs.2016.05.003 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
  2. 2.Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese MedicineUniversity of MacauTaipaMacau
  3. 3.Department of Food Science & Technology, Faculty of AgricultureUniversity for Development StudiesTamaleGhana
  4. 4.Food Refrigeration and Computerized Food Technology (FRCFT), School of Biosystems and Food EngineeringUniversity College Dublin, National University of IrelandDublin 4Ireland

Personalised recommendations