Advertisement

Direct Analysis of Cocoa Powder, Chocolate Powder, and Powdered Chocolate Drink for Multi-element Determination by Energy Dispersive X-ray Fluorescence Spectrometry

  • 93 Accesses

Abstract

The aim of this study was to evaluate the potential of applying energy dispersive X-ray fluorescence (EDXRF) spectrometry to determine Ca, K, P, Mg, Fe, Zn, Cu, Mn, and Al concentrations for direct analysis of cocoa powder, chocolate powder, and powdered chocolate drink samples. The proposed method was calibrated using samples previously analyzed by inductively coupled plasma optical emission spectrometry (ICP OES). For comparison purposes, the samples were also analyzed by ICP OES after an acid digestion procedure, and no significant differences were observed between the concentrations determined by EDXRF when compared to those by ICP OES. The coefficients of correlation (R) from the calibration curves and the limit of quantification (mg kg−1) were Ca (0.996, 0.030), K (0.985, 68), Mg (0.974, 0.020), P (0.986, 0.50), Mn (0.998, 3.6), Fe (0.981, 2.5), Cu (0.978, 1.3), Zn (0.996, 0.80), and Al (0.983, 7.5). The precisions obtained for the elements were between 1.5 and 7.8% (n = 7), indicating that the preparation of the pellets was efficient to perform analysis by EDXRF. Potassium was the macro-mineral with higher concentrations in the samples. In relation to the micro-minerals, Fe had the greatest concentration. Significant concentrations of Al were also found. It was found that, in general, samples of chocolate powder and powdered chocolate drink may be considered good sources for the ingestion of Mg, Mn, Ca, K, P, Fe, Zn, and Cu.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1

References

  1. Andrey D, Dufrier JP, Perring L (2018) Analytical capabilities of energy dispersive X-ray fluorescence for the direct quantification of iron in cocoa powder and powdered cocoa drink. Spectrochim Acta B At Spectrosc 148:137–142

  2. Association of official analytical chemists international - AOAC (2016) Guidelines for Standard Method Performance Requirements. Appendix F, p. 2–18

  3. Bartos A, Majak I, Leszczyńska J (2014) Uptake and assimilability of nickel in the course of systemic allergy: implications for elimination diet. Food Res Int 55:412–417

  4. Bertin EP (2012) Principles and practice of X-ray spectrometric analysis. Springer Science & Business Media

  5. Bondy SC (2014) Prolonged exposure to low levels of aluminum leads to changes associated with brain aging and neurodegeneration. Toxicology 315:1–7

  6. Brito GB, Teixeira LSG, Korn MGA (2017) Direct analysis of marine macroalgae for determination of macro minerals by energy dispersive X-ray fluorescence. Microchem J 134:35–40

  7. Costa VC, Amorim FAC, Babos DV, Pereira-Filho ER (2019) Direct determination of ca, K, mg, Na, P, S, Fe and Zn in bivalve mollusks by wavelength dispersive X-ray fluorescence (WDXRF) and laser-induced breakdown spectroscopy (LIBS). Food Chem 273:91–98

  8. Crozier SJ, Preston AG, Hurst JW, Payne MJ, Mann J, Hainly L, Miller DL (2011) Cacao seeds are a" super fruit": a comparative analysis of various fruit powders and products. Chem Cent J 5(1):5

  9. Gallardo H, Queralt I, Tapias J, Guerra M, Carvalho ML, Marguí E (2016) Possibilities of low-power X-ray fluorescence spectrometry methods for rapid multielemental analysis and imaging of vegetal foodstuffs. J Food Compos Anal 50:1–9

  10. Gothankar SS, Jha SK, Lenka P, Tripathi RM, Puranik VD (2009) Daily intake of manganese by local population around Kylleng Pyndengsohiong Mawthabah (Domiasiat), Meghalaya in India. Sci Total Environ 407(8):2868–2871

  11. Hartwig A, Jahnke G (2017) Metalle und ihre Verbindungen als Kontaminanten in Lebensmitteln. Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz 60(7):715–721

  12. Hartwig CA, Pereira RM, Rondan FS, Cruz SM, Duarte FA, Flores EM, Mesko MF (2016) The synergic effect of microwave and ultraviolet radiation for chocolate digestion and further determination of as, cd, Ni and Pb by ICP-MS. J Anal At Spectrom 31(2):523–530

  13. Herreros-Chavez L, Cervera ML, Morales-Rubio A (2019) Direct determination by portable ED-XRF of mineral profile in cocoa powder samples. Food Chem 278:373–379

  14. Jenkins R (1995) Quantitative X-ray spectrometry. CRC Press

  15. Kaur J, and Kumar A (2016) Elemental analysis of different varieties of rice samples using XRF technique. In AIP Conference Proceedings AIP Publishing 1728: 020350

  16. Krug, F and Rocha, F. (2016). Métodos de Preparo de Amostras/Fundamentos sobre preparo de amostras orgânicas e inorgânicas para análise elementar 1ª ed. Piracicaba: Ed.: CENA/USP

  17. Mir-Marqués A, Martínez-García M, Garrigues S, Cervera ML, de la Guardia M (2016) Green direct determination of mineral elements in artichokes by infrared spectroscopy and X-ray fluorescence. Food Chem 196:1023–1030

  18. Mohapatra A, Rautray TR, Patra AK, Vijayan V, Mohanty RK (2009) Trace element-based food value evaluation in soft and hard shelled mud crabs. Food Chem Toxicol 47(11):2730–2734

  19. Noda T, Tsuda S, Mori M, Takigawa S, Matsuura-Endo C, Kim SJ et al (2006) Determination of the phosphorus content in potato starch using an energy-dispersive X-ray fluorescence method. Food Chem 95(4):632–637

  20. Otaka A, Hokura A, Nakai I (2014) Determination of trace elements in soybean by X-ray fluorescence analysis and its application to identification of their production areas. Food Chem 147:318–326

  21. Paltridge NG, Milham PJ, Ortiz-Monasterio JI, Velu G, Yasmin Z, Palmer LJ et al (2012) Energy-dispersive X-ray fluorescence spectrometry as a tool for zinc, iron and selenium analysis in whole grain wheat. Plant Soil 361(1–2):261–269

  22. Peixoto RR, Mazon EA, Cadore S (2013) Estimation of the bioaccessibility of metallic elements in chocolate drink powder using an in vitro digestion method and spectrometric techniques. J Braz Chem Soc 24(5):884–890

  23. Peixoto RR, Devesa V, Vélez D, Cervera ML, Cadore S (2016) Study of the factors influencing the bioaccessibility of 10 elements from chocolate drink powder. J Food Compos Anal 48:41–47

  24. Peruchi, L. C., Nunes, L. C., de Carvalho, G. G. A., Guerra, M. B. B., de Almeida, E., Rufini, I. A., .and Krug, F. J. (2014). Determination of inorganic nutrients in wheat flour by laser-induced breakdown spectroscopy and energy dispersive X-ray fluorescence spectrometry. Spectrochim Acta B At Spectrosc 100: 129–136

  25. Preedy VR, Zibadi S (2013) In: Watson RR (ed) Chocolate in health and nutrition. Humana Press, London

  26. Pytlakowska K (2016a) Graphene-based preconcentration system prior to energy dispersive x-ray fluorescence spectrometric determination of co, Ni, and cu ions in wine samples. Food Anal Methods 9(8):2270–2279

  27. Pytlakowska K (2016b) Preconcentration of Zn, cu, and Ni ions from coffee infusions via 8-Hydroxyquinoline complexes on graphene prior to energy dispersive X-ray fluorescence spectrometry determination. Appl Spectrosc 70(11):1891–1899

  28. Ramtahal G, Yen IC, Bekele I, Bekele F, Wilson L, Sukha B, Maharaj K (2015) Cost-effective method of analysis for the determination of cadmium, copper, nickel and zinc in cocoa beans and chocolates. J Food Res 4(1):193

  29. Sager M (2012) Chocolate and cocoa products as a source of essential elements in nutrition. J Nutr Food Sci 2:1–10

  30. Ščančar J, Zuliani T, Milačič R (2013) Study of nickel content in Ni-rich food products in Slovenia. J Food Compos Anal 32(1):83–89

  31. Smoliński A, Stempin M, Howaniec N (2016) Determination of rare earth elements in combustion ashes from selected polish coal mines by wavelength dispersive X-ray fluorescence spectrometry. Spectrochim Acta B At Spectrosc 116:63–74

  32. Syahfitri WYN, Kurniawati S, Adventini N, Damastuti E, Lestiani DD (2017) Macro elemental analysis of food samples by nuclear analytical technique. J Phys Conf Ser IOP Publish 860:012023

  33. Thomsen V, Roberts G, Burgess K (2000) The concept of background equivalent concentration in spectrochemistry. Spectroscopy 15(1):33

  34. Van Grieken R, Markowicz A (eds) (2001) Handbook of X-ray spectrometry. CRC press

  35. Villa JE, Peixoto RR, Cadore S (2014) Cadmium and lead in chocolates commercialized in Brazil. J Agric Food Chem 62(34):8759–8763

  36. Villa JE, Pereira CD, Cadore S (2015) A novel, rapid and simple acid extraction for multielemental determination in chocolate bars. Microchem J 121:199–204

  37. Yanus RL, Sela H, Borojovich EJ, Zakon Y, Saphier M, Nikolski A, Gutflais E, Lorber A, Karpas Z (2014) Trace elements in cocoa solids and chocolate: an ICPMS study. Talanta 119:1–4

  38. Yeh TS, Liu YT, Liou PJ, Li HP, Chen CC (2016) Investigation of aluminum content of imported candies and snack foods in Taiwan. J Food Drug Anal 24(4):771–779

Download references

Author information

Correspondence to Maria Graças A. Korn.

Ethics declarations

Conflict of Interest

Luciane B. Oliveira declares that she has no conflict of interest. Wagna P. C. dos Santos declares that she has no conflict of interest. Leonardo S. G. Teixeira declares that he has no conflict of interest. Maria Graças A. Korn declares that she has no conflict of interest.

Ethical Approval

This article does not contain any studies involving human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 31 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oliveira, L.B., dos Santos, W.P.C., Teixeira, L.S.G. et al. Direct Analysis of Cocoa Powder, Chocolate Powder, and Powdered Chocolate Drink for Multi-element Determination by Energy Dispersive X-ray Fluorescence Spectrometry. Food Anal. Methods 13, 195–202 (2020). https://doi.org/10.1007/s12161-019-01565-w

Download citation

Keywords

  • Cocoa powder
  • Chocolate powder
  • Powdered chocolate drink
  • Inorganic constituents
  • Direct analysis
  • EDXRF