Field Performance of Saccharum × Miscanthus Intergeneric Hybrids (Miscanes) Under Cool Climatic Conditions of Northern Japan

  • Suraj Kar
  • Tzu-Ya Weng
  • Taiken Nakashima
  • Antonio Villanueva-Morales
  • J. Ryan Stewart
  • Erik J. Sacks
  • Yoshifumi Terajima
  • Toshihiko YamadaEmail author


Physiological susceptibility to early- and late-season chilling limits commercial production of sugarcane (Saccharum spp. hybrid), a major crop for lignocellulosic biomass, refined sugar, and bioethanol, to tropical and the warmest subtropical regions. Interspecific and intergeneric hybridization have been used to broaden the genetic base of sugarcane and improve its adaptation to temperate climates. Chilling tolerance can be introgressed in sugarcane through intergeneric hybridization with Miscanthus, a cold-tolerant C4 perennial grass, which is genetically homologous to sugarcane. This study evaluated intergeneric F1 hybrids of Saccharum × Miscanthus, miscanes, which included two genotypes of sugarcane × Miscanthus sinensis and sixteen genotypes of sugarcane × Miscanthus sacchariflorus, for their seasonal variation in photosynthesis and biomass production under field conditions in Hokkaido, Japan, to identify promising genotypes and traits, which can be selected to further improve sugarcane. Results showed several of the miscane genotypes had high early- and late-season photosynthesis coupled with high biomass production, which likely indicates chilling tolerance. High broad-sense heritabilities for traits, including stem diameter, tiller number, leaf width, leaf and stem dry weight, and high correlations between these traits and dry matter yield indicate selections can be made efficiently to improve sugarcane. Although none of the miscanes overwintered at the experimental location, we identified miscane “JM 14-09” as a superior genotype for introgression breeding programs and as a potential energycane cultivar for its high biomass-production capacity.


Sugarcane Photosynthesis Biomass Morphology Heritability 



We express sincere gratitude to the staff at the Field Science Center for Northern Biosphere for help in setting up and maintaining the project.

Funding Information

This research was supported by the Department of Energy (DOE) Office of Science, Office of Biological and Environmental Research (BER), grant no. DE-SC0016264 and the Sumitomo Foundation, grant no. 163348. Suraj Kar acknowledges the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) scholarship to pursue his doctoral studies at Hokkaido University, Japan.

Supplementary material

12155_2019_10066_MOESM1_ESM.docx (813 kb)
ESM 1 (DOCX 812 kb).


  1. 1.
    Burner DM, Hale AL, Viator RP et al (2017) Ratoon cold tolerance of Pennisetum, Erianthus, and Saccharum bioenergy feedstocks. Ind Crop Prod 109:327–334. CrossRefGoogle Scholar
  2. 2.
    FAOSTAT FAO (2016) FAOSTATGoogle Scholar
  3. 3.
    Waclawovsky AJ, Sato PM, Lembke CG, Moore PH, Souza GM (2010) Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnol J 8(3):263–276. PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Glowacka K, Ahmed A, Sharma S et al (2016) Can chilling tolerance of C4 photosynthesis in Miscanthus be transferred to sugarcane? GCB Bioenergy 8(2):407–418. CrossRefGoogle Scholar
  5. 5.
    Santiago AD, Rossetto R, de Mello IW, Urquiaga S (2010) Sugarcane. In: Halford NG, Karp A (eds) Energy crops. The Royal Society of Chemistry, Cambridge, pp 77–103CrossRefGoogle Scholar
  6. 6.
    Ge X, Burner DM, Xu J, Phillips GC, Sivakumar G (2011) Bioethanol production from dedicated energy crops and residues in Arkansas, USA. Biotechnol J 6(1):66–73. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    RFA (2017) World fuel ethanol production annual U. S. Fuel Ethanol Production Weekly & Monthly Ethanol Production. December 14, 2018. Accessed 14 Dec 2018
  8. 8.
    AMIS (2017) Market Monitor No 47. December 14, 2018. Accessed 14 Dec 2018
  9. 9.
    MAPA (2018) Sugarcane industry, Sugar and Ethanol Production in Brazil. 13–14. December 13, 2018. Accessed 13 Dec 2018
  10. 10.
    Du YC, Nose A, Wasano K (1999) Thermal characteristics of C4 photosynthetic enzymes from leaves of three sugarcane species differing in cold sensitivity. Plant Cell Physiol 40(3):298–304. CrossRefGoogle Scholar
  11. 11.
    Du YC, Nose A, Wasano K (1999) Effects of chilling temperature on photosynthetic rates, photosynthetic enzyme activities and metabolite levels in leaves of three sugarcane species. Plant Cell Environ 22(3):317–324. CrossRefGoogle Scholar
  12. 12.
    Sage RF, Peixoto MM, Sage TL (2013) Photosynthesis in sugarcane. In: Moore PH, Botha FC (eds) Sugarcane: physiology, biochemistry, and functional biology, 1st edn. Wiley, pp 121–154. CrossRefGoogle Scholar
  13. 13.
    Głowacka K, Jørgensen U, Kjeldsen JB, Kørup K, Spitz I, Sacks EJ, Long SP (2015) Can the exceptional chilling tolerance of C4 photosynthesis found in Miscanthus × giganteus be exceeded? Screening of a novel Miscanthus Japanese germplasm collection. Ann Bot 115(6):981–990. PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Grantz DA (1989) Effect of cool temperatures on photosynthesis and stomatal conductance in field-grown sugarcane in Hawaii. Field Crops Res 22(2):143–155. CrossRefGoogle Scholar
  15. 15.
    Allison JCS, Pammenter NW, Haslam RJ (2007) Why does sugarcane (Saccharum sp. hybrid) grow slowly? South African J Bot 73(4):546–551. CrossRefGoogle Scholar
  16. 16.
    Nose A, Uehara M, Kawamitsu Y et al (1994) Variations in leaf gas exchange traits of Saccharum including feral sugarcane, Saccharum spontaneum L. Japanese J Crop Sci 63(3):489–495. CrossRefGoogle Scholar
  17. 17.
    Fageria NK, Moreira A, Moraes LAC et al (2013) Sugarcane and Energycane. In: Singh BP (ed) Biofuel crops: production, physiology and genetics, 1st edn. CAB international Wallingford, UK, Boston, pp 151–171. CrossRefGoogle Scholar
  18. 18.
    Sloan RE, Farquhar RH (1978) The effects of frosting on varieties of sugar cane with commercial potential in New South Wales. In: Proceedings-Queensland Society of Sugar Cane Technologists (Australia)Google Scholar
  19. 19.
    Moore PH (1987) Anatomy and morphology. In: Heinz DJ (ed) Sugarcane improvement through breeding, 1st edn. Elsevier Science Publishers B.V. (Biomedical Division), Amsterdam, pp 85–142CrossRefGoogle Scholar
  20. 20.
    Beale CV, Long SP (1995) Can perennial C4 grasses attain high efficiencies of radiant energy conversion in cool climates? Plant Cell Environ 18(6):641–650. CrossRefGoogle Scholar
  21. 21.
    Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19(4):209–227. CrossRefGoogle Scholar
  22. 22.
    Clifton-Brown JC, Lewandowski I, Andersson B et al (2001) Performance of 15 Miscanthus genotypes at five sites in Europe. Agron J 93(5):1013–1019. CrossRefGoogle Scholar
  23. 23.
    Friesen PC, Peixoto MM, Busch FA, Johnson DC, Sage RF (2014) Chilling and frost tolerance in Miscanthus and Saccharum genotypes bred for cool temperate climates. J Exp Bot 65(13):3749–3758. PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Jackson P (2013) Energy cane. In: Saha MC, Bhandari HS, Bouton JH (eds) Bioenergy feedstocks: breeding and genetics, 1st edn. Wiley-Blackwell, pp 117–149. CrossRefGoogle Scholar
  25. 25.
    Khan NA, Bedre R, Parco A, Bernaola L, Hale A, Kimbeng C, Pontif M, Baisakh N (2013) Identification of cold-responsive genes in energycane for their use in genetic diversity analysis and future functional marker development. Plant Sci 211:122–131. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hale AL, Dufrene EO, Tew TL et al (2013) Registration of ‘Ho 02-113’ sugarcane. J Plant Regist 7(1):51–57. CrossRefGoogle Scholar
  27. 27.
    Knoll JE, Anderson WF, Richard EP et al (2013) Harvest date effects on biomass quality and ethanol yield of new energycane (Saccharum hyb.) genotypes in the Southeast USA. Biomass Bioenergy 56:147–156. CrossRefGoogle Scholar
  28. 28.
    Mukherjee SK (1957) Origin and distribution of Saccharum. Bot Gaz 119:55–61CrossRefGoogle Scholar
  29. 29.
    Chen CF (1953) Genetical analysis of morphological characters of OMM type hybrid obtained from POJ 2725 × Miscanthus japonicus cross. In: Proceedings International Society Sugar Cane Technologists. pp 533–546Google Scholar
  30. 30.
    Chen WH, Huang YJ, Shen IS, Shih SC (1983) Utilization of Miscanthus germplasm in sugarcane breeding in Taiwan. In: Proc. Int. Soc. Sugarcane Technol. pp 641–648Google Scholar
  31. 31.
    Ram B, Sreenivasan TV, Sahi BK, Singh N (2001) Introgression of low temperature tolerance and red rot resistance from Erianthus in sugarcane. Euphytica 122(1):145–153. CrossRefGoogle Scholar
  32. 32.
    D’Hont A, Rao PS, Feldmann P et al (1995) Identification and characterisation of sugarcane intergeneric hybrids, Saccharum officinarum × Erianthus arundinaceus, with molecular markers and DNA in situ hybridisation. Theor Appl Genet 91(2):320–326. PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Piperidis G, Christopher MJ, Carroll BJ, Berding N, D'Hont A (2000) Molecular contribution to selection of intergeneric hybrids between sugarcane and the wild species Erianthus arundinaceus. Genome 43(6):1033–1037. PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Pachakkil B, Terajima Y, Ohmido N et al (2019) Cytogenetic and agronomic characterization of intergeneric hybrids between Saccharum spp. hybrid and Erianthus arundinaceus. Sci Rep 9:1748. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    OGTR (2011) Office of the gene technology regulator. In: The biology of the Saccharum spp. (sugarcane). 3:1–64.$FILE/biologysugarcane11.pdf
  36. 36.
    Moore PH, Paterson AH, Tew T (2013) Sugarcane: the crop, the plant, and domestication. In: Moore PH, Botha FC (eds) Sugarcane: Physiology, biochemistry, and functional biology, 1st edn. John Wiley & Sons, Inc., pp 1–17. CrossRefGoogle Scholar
  37. 37.
    Chen YH, Lo CC (1989) Disease resistance and sugar content in Saccharum-Miscanthus hybrids. Taiwan Sugar 36(3):9–12Google Scholar
  38. 38.
    Lo CC, Chia YH, Chen WH, et al (1978) Collecting miscanthus germplasm in Taiwan. In: Proceedings of the International Society of Sugar Cane Technologists. pp 59–69Google Scholar
  39. 39.
    Deren CW, Snyder GH, Tai PYP et al (1991) Biomass production and biochemical methane potential of seasonally flooded inter-generic and inter-specific Saccharum hybrids. Bioresour Technol 36(2):179–184. CrossRefGoogle Scholar
  40. 40.
    Burner DM, Tew TL, Harvey JJ, Belesky DP (2009) Dry matter partitioning and quality of Miscanthus, Panicum, and Saccharum genotypes in Arkansas, USA. Biomass Bioenergy 33(4):610–619. CrossRefGoogle Scholar
  41. 41.
    Ando S, Sugiura M, Yamada T et al (2011) Overwintering ability and dry matter production of sugarcane hybrids and relatives in the Kanto region of Japan. Japan Agric Res Q 45(3):259–267. CrossRefGoogle Scholar
  42. 42.
    Chen YH (1993) Genetics and breeding studies on Saccharum-Miscanthus nobilization. Mem Coll Agric, Natl Taiwan Univ 33:345–350Google Scholar
  43. 43.
    Park J, Yu Q, Gracia NS, et al (2011) Development of new intergeneric cane hybrids, Miscanes, as a source of biomass feedstock for biofuel production. In: Plant and Animal Genomes XIX Conference, San Diego. pp 15–19Google Scholar
  44. 44.
    Stewart JR, Toma Y, Fernandez FG et al (2009) The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: a review. GCB Bioenergy 1(2):126–153. CrossRefGoogle Scholar
  45. 45.
    Fonteyne S, Roldán-Ruiz I, Muylle H, et al (2016) A review of frost and chilling stress in Miscanthus and its importance to biomass yield. In: Barth S, Murphy-Bokern D, Kalinina O, Taylor G, Jones M (eds) Perennial biomass crops for a resource-constrained world. pp 127-144. CrossRefGoogle Scholar
  46. 46.
    Hodkinson TR, Chase MW, Renvoize SA (2002) Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR. Ann Bot 89(5):627–636. PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Farrell AD, Clifton-Brown JC, Lewandowski I, Jones MB (2006) Genotypic variation in cold tolerance influences the yield of Miscanthus. Ann Appl Biol 149(3):337–345. CrossRefGoogle Scholar
  48. 48.
    Clifton-Brown JC, Lewandowski I (2000) Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance. New Phytol 148(2):287–294. CrossRefGoogle Scholar
  49. 49.
    Anderson E, Arundale R, Maughan M et al (2011) Growth and agronomy of Miscanthus × giganteus for biomass production. Biofuels 2(1):167–183. CrossRefGoogle Scholar
  50. 50.
    Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25(4):335–361. CrossRefGoogle Scholar
  51. 51.
    Heaton EA, Flavell RB, Mascia PN et al (2008) Herbaceous energy crop development: recent progress and future prospects. Curr Opin Biotechnol 19(3):202–209. PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Pyter R, Heaton E, Dohleman F et al (2009) Agronomic experiences with Miscanthus ×giganteus in Illinois, USA. In: Mielenz J (ed) Biofuels. Methods in molecular biology (methods and protocols). Humana Press, Totowa, pp 41–52Google Scholar
  53. 53.
    Beale CV, Bint DA, Long SP (1996) Leaf photosynthesis in the C4-grass Miscanthus ×giganteus, growing in the cool temperate climate of southern England. J Exp Bot 47(2):267–273. CrossRefGoogle Scholar
  54. 54.
    Price L, Bullard M, Lyons H et al (2004) Identifying the yield potential of Miscanthus × giganteus: an assessment of the spatial and temporal variability of M. × giganteus biomass productivity across England and Wales. Biomass Bioenergy 26(1):3–13. CrossRefGoogle Scholar
  55. 55.
    Heaton EA, Dohleman FG, Miguez AF, et al (2010) Miscanthus: a promising biomass crop. In: Advances in botanical research, vol. 56. Academic Press, pp 75–137CrossRefGoogle Scholar
  56. 56.
    Beale CV, Long SP (1997) The effects of nitrogen and irrigation on the productivity of the C4 grasses Miscanthus × giganteus and Spartina cynosuroides. Asp Appl Biol (49) 225–230Google Scholar
  57. 57.
    Beale CV, Morison JI, Long SP (1999) Water use efficiency of C4 perennial grasses in a temperate climate. Agric For Meteorol 96(1-3):103–115. CrossRefGoogle Scholar
  58. 58.
    Amalraj VA, Balasundaram N (2006) On the taxonomy of the members of “Saccharum complex”. Genet Resour Crop Evol 53(1):35–41. CrossRefGoogle Scholar
  59. 59.
    Sacks EJ, Juvik JA, Lin Q et al (2013) The gene pool of Miscanthus species and its improvement. In: Paterson AH (ed) Genomics of the Saccharinae. Springer, New York, pp 73–101CrossRefGoogle Scholar
  60. 60.
    Li HW (1948) Cytological studies of sugarcane and its relatives I. hybrids between Saccharum officinarum, Miscanthus japonicus and Saccharum spontaneum. Bot Bull Acad Sin (Taipei) (2):147–160Google Scholar
  61. 61.
    Li HW (1961) Cytological studies on sugarcane and its relatives. XVIII. Trigeneric hybrids of Saccharum officinarum L., Sclerostachya fusca A. Camus, and Miscanthus japonicus Anderss. Bot Bull Acad Sin (Taipei) (2): 1–9Google Scholar
  62. 62.
    Loh CS, Wu TH (1949) A note on the trihybrids of (S. officinarum × S. robustum) × Miscanthus japonica. Sugarcane Res Annu Prog Rep (3):377–386Google Scholar
  63. 63.
    Price S (1965) Interspecific hybridization in sugarcane breeding. In: Proc Int Soc Sugar Cane Technol. pp 1021–1026Google Scholar
  64. 64.
    Xiao F, Tai PYP (1994) Antheral transformation into stigma in interspecific and intergeneric hybrids of Saccharum. J Am Soc Sugar Cane Technol 14:33–39.
  65. 65.
    Burner DM (1997) Chromosome transmission and meiotic behavior in various sugarcane crosses. J Am Soc Sugar Cane Technol 17:38–50.
  66. 66.
    Chen Y, Chen C, Lo C, others (2000) Extraordinary phenomenon of cell division in Saccharum, Miscanthus, and their nobilized progenies. Rep Taiwan Sugar Res Inst (170): 27–44Google Scholar
  67. 67.
    Price S, Daniels J (1968) Cytology of South Pacific sugarcane and related grasses. J Hered 59(2):141–145. CrossRefGoogle Scholar
  68. 68.
    Grivet L, Glaszmann J-C, D’Hont A (2006) Molecular evidence for sugarcane evolution and domestication. In: Motley T, Zerega N, Cross H (eds) Darwin’s harvest. New approaches to the origins, evolution, and conservation of crops. Columbia University Press, New York, pp 49–66Google Scholar
  69. 69.
    Burner DM, Hale AL, Carver P et al (2015) Biomass yield comparisons of giant miscanthus, giant reed, and miscane grown under irrigated and rainfed conditions. Ind Crops Prod 76:1025–1032. CrossRefGoogle Scholar
  70. 70.
    Chen YH, Chen C, Lo CC (1993) Studies on anatomy and morphology in Saccharum-Miscanthus nobilized hybrids. 1. Transmission of tillering, ratooning, adaptation and disease resistance from Miscanthus spp. J Agric Assoc China (164):31–45Google Scholar
  71. 71.
    Kar S, Zhang N, Nakashima T et al (2019) Saccharum × Miscanthus intergeneric hybrids (miscanes) exhibit greater chilling tolerance of C4 photosynthesis and post-chilling recovery than sugarcane (Saccharum spp. hybrids). GCB Bioenergy 11(11): 1318–1333. CrossRefGoogle Scholar
  72. 72.
    Głowacka K, Adhikari S, Peng J, Gifford J, Juvik JA, Long SP, Sacks EJ (2014) Variation in chilling tolerance for photosynthesis and leaf extension growth among genotypes related to the C4 grass Miscanthus × giganteus. J Exp Bot 65(18):5267–5278. PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Muchanga RA, Hirata T, Araki H (2017) Hairy vetch becomes an alternative basal N fertilizer in low-input fresh-market tomato production in plastic high tunnel. Hort J  86(4): 493–500. CrossRefGoogle Scholar
  74. 74.
    Long SP (1983) C4 photosynthesis at low temperatures. Plant Cell Environ 6(4):345–363. Google Scholar
  75. 75.
    Baker NR, Long SP, Ort DR (1988) Photosynthesis and temperature, with particular reference to effects on quantum yield. In: Symposia of the Society for Experimental Biology. pp 347–375Google Scholar
  76. 76.
    Głowacka K, Jez˙owski S, Kaczmarek Z (2013) Gas exchange and yield in Miscanthus species for three years at two locations in Poland. Can J Plant Sci 93(4):627–637. CrossRefGoogle Scholar
  77. 77.
    Long SP, Spence AK (2013) Toward cool C4 crops. Annu Rev Plant Biol 64:701–722. CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Artschwager E (1925) Anatomy of the vegetative organs of sugarcane. J Agric Res 30:197–221Google Scholar
  79. 79.
    Viator RP, Richard EP (2012) Sugar and energy cane date of planting effects on cane, sucrose, and fiber yields. Biomass Bioenergy 40:82–85. CrossRefGoogle Scholar
  80. 80.
    Dohleman FG, Heaton EA, Leakey ADB, Long SP (2009) Does greater leaf-level photosynthesis explain the larger solar energy conversion efficiency of Miscanthus relative to switchgrass? Plant Cell Environ 32(11):1525–1537. CrossRefGoogle Scholar
  81. 81.
    He Y, Feng X, Fang J et al (2015) Comparison of the growth and biomass production of Miscanthus sinensis, Miscanthus floridulus and Saccharum arundinaceum. Spanish J Agric Res 13(3):e0703. CrossRefGoogle Scholar
  82. 82.
    Jezowski S (2008) Yield traits of six clones of Miscanthus in the first 3 years following planting in Poland. Ind Crop Prod 27(1):65–68. CrossRefGoogle Scholar
  83. 83.
    Pude R, Jezowski S (2003) Effect of selected morphogenetic traits on the growth and development of Miscanthus ssp. Biul IHAR (227): 573–583Google Scholar
  84. 84.
    Weraduwage SM, Chen J, Anozie FC, Morales A, Weise SE, Sharkey TD (2015) The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana. Front Plant Sci 6:167. CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Vidya C, Sunny K, Vijayaraghava K et al (2002) Genetic variability and heritability of yield and related characters in yard-long bean. J Trop Agric 40:11–13Google Scholar
  86. 86.
    Ma XF, Jensen E, Alexandrov N, Troukhan M, Zhang L, Thomas-Jones S, Farrar K, Clifton-Brown J, Donnison I, Swaller T, Flavell R (2012) High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis. PLoS One 7:e33821. CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Thirugnanasambandam PP, Hoang NV, Henry RJ (2018) The challenge of analyzing the sugarcane genome. Front Plant Sci 9:614. CrossRefGoogle Scholar
  88. 88.
    Nair NV, Somarajan KG, Balasundaram N et al (1980) Genetic variability, heritability and genetic advance in Saccharum officinarum L. Int Sugar J 82(981):275–276Google Scholar
  89. 89.
    Chaudhary RR (2001) Genetic variability and heritability in sugarcane. Nepal Agric Res J 4&5:56–59.
  90. 90.
    Jamoza JE, Owuoche J, Kiplagat O et al (2014) Broad-sense heritability estimation and correlation among sugarcane (Saccharum spp. hybrids) yield and some agronomic traits in western Kenya. Int J Agric Policy Res 2(1):16–25Google Scholar
  91. 91.
    Tena E, Mekbib F, Ayana A (2016) Heritability and correlation among sugarcane (Saccharum spp.) yield and some agronomic and sugar quality traits in Ethiopia. Am J Plant Sci 7(10):1453–1477. CrossRefGoogle Scholar
  92. 92.
    Khan FA, Iqbal MY, Sultan M (2007) Morphogenetic behaviour of some agronomic traits of sugarcane (Saccharum officinarum L.). Pakistan J Agric Sci 44(4):600–603Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Graduate School of Environmental ScienceHokkaido UniversitySapporoJapan
  2. 2.Graduate School of Global Food ResourcesHokkaido UniversitySapporoJapan
  3. 3.Research Faculty of AgricultureHokkaido UniversitySapporoJapan
  4. 4.Department of Statistics, Mathematics and Computing, Forest Sciences DivisionUniversidad Autónoma ChapingoTexcocoMexico
  5. 5.Department of Plant and Wildlife SciencesBrigham Young UniversityProvoUSA
  6. 6.Department of Crop Sciences, University of Illinois, Urbana-ChampaignUrbanaUSA
  7. 7.Tropical Agriculture Research Front, Japan International Research Center for Agricultural SciencesIshigakiJapan
  8. 8.Field Science Center for Northern BiosphereHokkaido UniversitySapporoJapan

Personalised recommendations