Municipal Wastewater Enriched with Trace Metals for Enhanced Lipid Production of the Biodiesel-Promising Microalga Scenedesmus obliquus

  • Song-Fang Han
  • Wenbiao Jin
  • Abd El-Fatah Abomohra
  • Renjie Tu
  • Xu ZhouEmail author
  • Zhongqi He
  • Chuan Chen
  • Guo-jun Xie


In the present study, the effect of trace metal nutrients on biomass and lipid productivity of Scenedesmus obliquus cultured in municipal wastewater was evaluated. Lipid productivity of S. obliquus significantly increased by 18.63%, 19.21%, and 27.95% by adding trace metals of Mo, Mn, and Fe, respectively, with the highest lipid productivity of 24.69 mg/(L·d) in case of Fe (3.00 mg/L FeSO4·7H2O). GC analysis of the lipids showed that the control (WW) and ferrous sulfate–treated cultures had very similar compositions, and both of them contained considerable proportions C16-18, showing their suitability for biodiesel production. Moreover, using FeSO4·7H2O enhanced the removal rates of total phosphorus, ammonia nitrogen, and total nitrogen in municipal wastewater, which attained 94.7%, 99.2%, and 95.8%, respectively.


Trace metal nutrients Municipal wastewater Cultivation Scenedesmus obliquus Lipid productivity 


Funding Information

This work was supported by the National Natural Science Foundation of China (No. 51878215), Natural Science Foundation of Guangdong Province, China (2018A030313185), and Shenzhen Science and Technology Innovation Project (KJYY20171011144235970, JCYJ20170307150223308).


  1. 1.
    Han S, Jin W, Tu R, Wu W (2015) Biofuel production from microalgae as feedstock: current status and potential. Crit Rev Biotechnol 35:255–268CrossRefGoogle Scholar
  2. 2.
    Muthuraj M, Chandra N, Palabhanvi B, Kumar V, Das D (2015) Process engineering for high-cell-density cultivation of lipid rich microalgal biomass of Chlorella sp FC2 IITG. Bioenerg Res 8:726–739CrossRefGoogle Scholar
  3. 3.
    Wu Y, Yu Y, Hu H (2014) Effects of initial phosphorus concentration and light intensity on biomass yield per phosphorus and lipid accumulation of Scenedesmus sp LX1. Bioenerg Res 7:927–934CrossRefGoogle Scholar
  4. 4.
    Zhou WG, Chen P, Min M, Ma XC, Wang JH, Griffith R, Hussain F, Peng P, Xie QL, Li Y (2014) Environment-enhancing algal biofuel production using wastewaters. Renew Sust Energ Rev 36:256–269CrossRefGoogle Scholar
  5. 5.
    Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102:159–165CrossRefGoogle Scholar
  6. 6.
    Tu RJ, Jin WB, Xi TT, Yang Q, Han SF, Abomohra A (2015) Effect of static magnetic field on the oxygen production of Scenedesmus obliquus cultivated in municipal wastewater. Water Res 86:132–138CrossRefGoogle Scholar
  7. 7.
    Lee CS, Oh HS, Oh HM, Kim HS, Ahn CY (2016) Two-phase photoperiodic cultivation of algal-bacterial consortia for high biomass production and efficient nutrient removal from municipal wastewater. Bioresour Technol 200:867–875CrossRefGoogle Scholar
  8. 8.
    Cho DH, Choi JW, Kang Z, Kim BH, Oh HM, Kim HS, Ramanan R (2017) Microalgal diversity fosters stable biomass productivity in open ponds treating wastewater. Sci Rep-Uk 7Google Scholar
  9. 9.
    Han SF, Jin WB, Tu RJ, Abomohra A, Wang ZH (2016) Optimization of aeration for biodiesel production by Scenedesmus obliquus grown in municipal wastewater. Bioprocess Biosyst Eng 39:1073–1079CrossRefGoogle Scholar
  10. 10.
    Han SF, Jin WB, Chen YG, Tu RJ, Abomohra A (2016) Enhancement of lipid production of Chlorella Pyrenoidosa cultivated in municipal wastewater by magnetic treatment. Appl Biochem Biotech 180:1043–1055CrossRefGoogle Scholar
  11. 11.
    Yu Z, Song M, Pei H, Jiang L, Hou Q, Nie C, Zhang L (2017) The effects of combined agricultural phytohormones on the growth, carbon partitioning and cell morphology of two screened algae. Bioresour Technol 239:87–96CrossRefGoogle Scholar
  12. 12.
    Park W, Yoo G, Moon M, Kim CW, Choi Y, Yang J (2013) Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Appl Biochem Biotech 171:1128–1142CrossRefGoogle Scholar
  13. 13.
    Ren H, Liu B, Kong F, Zhao L, Xie G, Ren N (2014) Enhanced lipid accumulation of green microalga Scenedesmus sp by metal ions and EDTA addition. Bioresour Technol 169:763–767CrossRefGoogle Scholar
  14. 14.
    Che R, Huang L, Yu X (2015) Enhanced biomass production, lipid yield and sedimentation efficiency by iron ion. Bioresour Technol 192:795–798CrossRefGoogle Scholar
  15. 15.
    Salama ES, Kurade MB, Abou-Shanab R, El-Dalatony MM, Yang IS, Min B, Jeon BH (2017) Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew Sust Energ Rev 79:1189–1211CrossRefGoogle Scholar
  16. 16.
    Abomohra AE, Wagner M, El-Sheekh M, Hanelt D (2013) Lipid and total fatty acid productivity in photoautotrophic fresh water microalgae: screening studies towards biodiesel production. J Appl Phycol 25:931–936CrossRefGoogle Scholar
  17. 17.
    Folch J, Lees M, Stanley GA (1957) Simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509Google Scholar
  18. 18.
    Kaczmarzyk D, Fulda M (2010) Fatty acid activation in cyanobacteria mediated by acyl-acyl carrier protein synthetase enables fatty acid recycling. Plant Physiol 152:1598–1610CrossRefGoogle Scholar
  19. 19.
    State Environmental Protection Administration (2002) Water and wastewater monitoring analysis method. China Environmental Science Press, BeijingGoogle Scholar
  20. 20.
    Sunda WG, Huntsman SA (1995) Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar Chem 50:189–206CrossRefGoogle Scholar
  21. 21.
    Chen M, Tang H, Ma H, Holland TC, Ng KYS, Salley SO (2011) Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresour Technol 102:1649–1655CrossRefGoogle Scholar
  22. 22.
    Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657CrossRefGoogle Scholar
  23. 23.
    Li X, Hu HY, Gan K, Sun YX (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101:5494–5500CrossRefGoogle Scholar
  24. 24.
    Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sust Energ Rev 16:143–169CrossRefGoogle Scholar
  25. 25.
    Song YH, Hahn HH, Hoffmann E (2002) Effects of solution conditions on the precipitation of phosphate for recovery - a thermodynamic evaluation. Chemosphere 48:1029–1034CrossRefGoogle Scholar
  26. 26.
    Richmond (Ed.), (2004) Handbook of microalgal culture. Blackwell Science Ltd., Oxford, UKGoogle Scholar
  27. 27.
    Hoffmann JP (1998) Wastewater treatment with suspended and nonsuspended algae. J Phycol 34(5):757–763CrossRefGoogle Scholar
  28. 28.
    Kim BH, Kang Z, Ramanan R, Choi JE, Cho DH, Oh HM, Kim HS (2014) Nutrient removal and biofuel production in high rate algal pond using real municipal wastewater. J Microbiol Biotechnol 24:1123–1132CrossRefGoogle Scholar
  29. 29.
    Reeves TG (1972) Nitrogen removal - literature review. J Water Pollut Control Fed 44:1895Google Scholar
  30. 30.
    Matusiak K, Przytockajusiak M, Leszczynskagerula K, Horoch M (1976) Studies on purification of wastewater from nitrogen-fertilizer industry by intensive algal cultures .2. Removal of nitrogen from wastewater. Acta Microbiol Pol 25:361–374Google Scholar
  31. 31.
    Park WK, Yoo G, Moon M, Kim CW, Choi YE, Yang JW (2013) Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Appl Biochem Biotech 171(5):1128–1142CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Song-Fang Han
    • 1
  • Wenbiao Jin
    • 1
  • Abd El-Fatah Abomohra
    • 2
  • Renjie Tu
    • 1
  • Xu Zhou
    • 1
    Email author
  • Zhongqi He
    • 1
  • Chuan Chen
    • 3
  • Guo-jun Xie
    • 3
  1. 1.Shenzhen Engineering Laboratory of Microalgal BioenergyHarbin Institute of Technology (Shenzhen)ShenzhenChina
  2. 2.New Energy Department, School of Energy and Power EngineeringJiangsu UniversityZhenjiangChina
  3. 3.State Key Laboratory of Urban Water Resource and Environment (SKLUWRE)Harbin Institute of TechnologyHarbinChina

Personalised recommendations