Advertisement

Soil Bacterial Community Changes in Sugarcane Fields Under Straw Removal in Brazil

  • Laisa G. PimentelEmail author
  • Thiago Gumiere
  • Dener M. S. Oliveira
  • Maurício R. Cherubin
  • Fernando D. Andreote
  • Carlos E. P. Cerri
  • Carlos C. Cerri
Article

Abstract

Global promotion of bioenergy for mitigating climate changes has arisen the interest of the Brazilian sugarcane industry to use crop residue (straw) as an important source of biomass for bioelectricity and cellulosic ethanol production. However, the sugarcane straw influences several soil properties, supporting soil quality and crop yields. Thus, defining an optimal removal rate would keep the benefits of the sugarcane straw in soil, and also maximize the bioenergy production. Shifts on soil bacterial structure have been used as a sensitive indicator of land management and could help to prescribe an optimal removal rate. We conducted a field study at two sites in São Paulo state to investigate how rates of sugarcane straw removal are associated with soil bacterial community changes over 1 year. Four sugarcane straw removal rates were evaluated: no removal (~ 14 Mg ha−1 of dry mass left) and 50% (~ 7.0 Mg ha−1), 75% (~ 3.5 Mg ha−1), and 100% of straw removal. The soil bacterial community structure was evaluated by the terminal restriction fragment length polymorphism (T-RFLP). Our results indicated that soil bacteria communities change over time, regardless of site conditions, and their changes are more strongly associated with changes on straw composition. A similar straw decomposition dynamics was observed under moderate (50%) and no removal treatments. Moderate straw removal induced the lowest modification of the bacterial niche occupancy and highest microbial interaction when compared with the no removal. Therefore, the identification of changes in soil bacterial structure community is useful to provide guidance for sugarcane straw removal.

Keywords

Bioenergy T-RFLP Microbial community Straw quality Hemicellulose 

Notes

Acknowledgments

Laisa G. Pimentel, Thiago Gumiere, and Dener M. S. Oliveira thank the São Paulo Research Foundation - FAPESP (processes #2015/00308-0, #2013/18529-8, and #2014/08632-9) for providing their PhD scholarships. Maurício R. Cherubin thanks the Fundação de Estudos Agrários Luiz de Queiroz (Project #67555) for providing his postdoctoral fellowship and FAPEPS (Process #2018/09845-7).

Funding Information

This research received funding from the Brazilian Development Bank - BNDES and the Raízen Energia S/A (Project #14.2.0773.1).

Supplementary material

12155_2019_10010_MOESM1_ESM.docx (404 kb)
ESM 1 (DOCX 403 kb)

References

  1. 1.
    CONAB, Companhia Nacional de Abastecimento (2018) Acompanhamento da safra brasileira: Cana-de-açúcar - V5 - safra 2018/19. Terceiro levantamento, dezembro 2018. https://www.conab.gov.br/info-agro/safras/cana/boletim-da-safra-de-cana-de-acucar. Accessed 11 March 2019
  2. 2.
    Carvalho JLN, Nogueirol RC, Menandro LMS, Bordonal RO, Borges CD, Cantarella H, Franco HCJ (2017) Agronomic and environmental implications of sugarcane straw removal: a major review. GCB Bioenergy 9:1181–1195.  https://doi.org/10.1111/gcbb.12410 CrossRefGoogle Scholar
  3. 3.
    Menandro LMS, Cantarella H, Franco HCJ, Kolln OT, Pimenta MTB, Sanches GM, Rabelo SC, Carvalho JLN (2017) Comprehensive assessment of sugarcane straw: implications for biomass and bioenergy production. Biofuels Bioprod Biorefin 11:488–504.  https://doi.org/10.1002/bbb.1760 CrossRefGoogle Scholar
  4. 4.
    Cherubin MR, Oliveira DMS, Feigl BJ, Pimentel LG, Lisboa IP, Gmach MR, Varanda LL, Morais MC, Satiro LS, Popin GV, de Paiva SR, dos Santos AKB, de Vasconcelos ALS, de Melo PLA, Cerri CEP, Cerri CC (2018) Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: a review. Sci Agríc 75:255–272.  https://doi.org/10.1590/1678-992x-2016-0459 CrossRefGoogle Scholar
  5. 5.
    Sousa JG Jr, Cherubin MR, Cerri CEP, Cerri CC, Feigl BJ (2017) Sugar cane straw left in field during harvest: decomposition dynamics and composition changes. Soil Res 55:758–768.  https://doi.org/10.1071/SR16310 CrossRefGoogle Scholar
  6. 6.
    Pimentel LG, Cherubin MR, Oliveira DMS, Cerri CEP, Cerri CC (2019) Decomposition of sugarcane straw: basis for management decisions for bioenergy production. Biomass Bioenergy 122:133–144.  https://doi.org/10.1016/j.biombioe.2019.01.027 CrossRefGoogle Scholar
  7. 7.
    Oliveira DMS, Williams S, Cerri CEP, Paustian K (2017) Predicting soil C changes over sugarcane expansion in Brazil using the DayCent model. GCB Bioenergy 9:1436–1446.  https://doi.org/10.1111/gcbb.12427 CrossRefGoogle Scholar
  8. 8.
    Rachid C, Pires CA, Leite DCA, Coutinho HLC, Peixoto RS, Rosado AS, Salton J, Zanatta JA, Mercante FM, Angelini GAR, Balieiro FD (2016) Sugarcane trash levels in soil affects the fungi but not bacteria in a short-term field experiment. Braz J Microbiol 47:322–326.  https://doi.org/10.1016/j.bjm.2016.01.010 CrossRefGoogle Scholar
  9. 9.
    Mendes LW, Brossi MJD, Kuramae EE, Tsai SM (2015) Land-use system shapes soil bacterial communities in Southeastern Amazon region. Appl Soil Ecol 95:151–160.  https://doi.org/10.1016/j.apsoil.2015.06.005 CrossRefGoogle Scholar
  10. 10.
    Zhao SC, Li KJ, Zhou W, Qiu SJ, Huang SW, He P (2016) Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Agric Ecosyst Environ 216:82–88.  https://doi.org/10.1016/j.agee.2015.09.028 CrossRefGoogle Scholar
  11. 11.
    Xu M, Xia H, Wu J, Yang G, Zhang X, Peng H, Yu X, Li L, Xiao H, Qi H (2017) Shifts in the relative abundance of bacteria after wine-lees-derived biochar intervention in multi metal-contaminated paddy soil. Sci Total Environ 599:1297–1307.  https://doi.org/10.1016/j.scitotenv.2017.05.086 CrossRefGoogle Scholar
  12. 12.
    Finn D, Kopittke PM, Dennis PG, Dalal RC (2017) Microbial energy and matter transformation in agricultural soils. Soil Biol Biochem 111:176–192.  https://doi.org/10.1016/j.soilbio.2017.04.010 CrossRefGoogle Scholar
  13. 13.
    Wang J, Ren C, Cheng H, Zou Y, Bughio MA, Li Q (2017) Conversion of rainforest into agroforestry andmonoculture plantation in China: consequences for soil phosphorus forms and microbial community. Sci Total Environ 595:769–778.  https://doi.org/10.1016/j.scitotenv.2017.04.012 CrossRefGoogle Scholar
  14. 14.
    Lammel DR, Nusslein K, Tsai SM, Cerri CC (2015) Land use, soil and litter chemistry drive bacterial community structures in samples of the rainforest and Cerrado (Brazilian Savannah) biomes in Southern Amazonia. Eur J Soil Biol 66:32–39.  https://doi.org/10.1016/j.ejsobi.2014.11.001 CrossRefGoogle Scholar
  15. 15.
    Karimi B, Maron PA, Boure NC-P, Bernard N, Gilbert D, Ranjard L (2017) Microbial diversity and ecological networks as indicators of environmental quality. Environ Chem Lett 15:265–281.  https://doi.org/10.1007/s10311-017-0614-6 CrossRefGoogle Scholar
  16. 16.
    Gumiere T, Gumiere SJ, Matteau J-P, Constant P, Létourneau G, Rousseau AN (2019) Soil bacterial community associated with high potato production and minimal water use. Front Environ Sci 6:1–14.  https://doi.org/10.3389/fenvs.2018.00161 CrossRefGoogle Scholar
  17. 17.
    Liao J, Cao X, Zhao L, Wang J, Gao Z, Wang M, Huang Y (2016) The importance of neutral and niche processes for bacterial community assembly differs between habitat generalists and specialists. FEMS Microbiol Ecol 92:1–10.  https://doi.org/10.1093/femsec/fiw174 CrossRefGoogle Scholar
  18. 18.
    Atlas R, Horowitz A, Krichevsky M, Bej A (1991) Response of microbial populations to environmental disturbance. Microb Ecol 22:249–256.  https://doi.org/10.1007/BF02540227 CrossRefGoogle Scholar
  19. 19.
    USDA, United States Department of Agriculture (2014) Keys to soil taxonomy. USDA - Natural Resources Conservation Service, Washington, DCGoogle Scholar
  20. 20.
    Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597.  https://doi.org/10.3168/jds.S0022-0302(91)78551-2 CrossRefGoogle Scholar
  21. 21.
    Schutte UME, Abdo Z, Bent SJ, Williams CJ, Schneider GM, Solheim B, Forney LJ (2009) Bacterial succession in a glacier foreland of the High Arctic. ISME J 3:1258–1268.  https://doi.org/10.1111/j.1365-294X.2009.04479.x CrossRefGoogle Scholar
  22. 22.
    Durrer A, Gumiere T, Taketani RG, da Costa DP, Silva M, Andreote FD (2017) The drivers underlying biogeographical patterns of bacterial communities in soils under sugarcane cultivation. Appl Soil Ecol 110:12–20.  https://doi.org/10.1016/j.apsoil.2016.11.005 CrossRefGoogle Scholar
  23. 23.
    Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522Google Scholar
  24. 24.
    Culman SW, Gauch HG, Blackwood CB, Thies JE (2008) Analysis of T-RFLP data using analysis of variance and ordination methods: a comparative study. J Microbiol Methods 75:55–63.  https://doi.org/10.1016/j.mimet.2008.04.011 CrossRefGoogle Scholar
  25. 25.
    R Development Core Team (2018) R: a language and environment for statistical computing, reference index version 3.5.2. R Foundation for Statistical Computing, Vienna ISBN 3-900051-07-0, http://www.R-project.org Google Scholar
  26. 26.
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Szoecs E, Wagner H (2018) vegan: Community Ecology Package. R package version 2.5-3Google Scholar
  27. 27.
    Chazdon RL, Chao A, Colwell RK, Lin S-Y, Norden N, Letcher SG, Clark DB, Finegan B, Arroyo JP (2011) A novel statistical method for classifying habitat generalists and specialists. Ecology 92:1332–1343.  https://doi.org/10.1890/10-1345.1 CrossRefGoogle Scholar
  28. 28.
    Kurtz Z, Mueller C, Miraldi E, Bonneau R (2019) SpiecEasi Package. R package version 2.5-3Google Scholar
  29. 29.
    Batushansky A, Toubiana D, Fait A (2016) Correlation-based network generation, visualization, and analysis as a powerful tool in biological studies: a case study in cancer cell metabolism. Biomed Res Int 2016:1–9.  https://doi.org/10.1155/2016/8313272 CrossRefGoogle Scholar
  30. 30.
    Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. In: Third International AAAI Conference on Weblogs and Social Media. pp 361-362.Google Scholar
  31. 31.
    Ma Z (2018) The P/N (positive-to-negative links) ratio in complex networks—a promising in silico biomarker for detecting changes occurring in the human microbiome. Microb Ecol 75:1063–1073.  https://doi.org/10.1007/s00248-017-1079-7 CrossRefGoogle Scholar
  32. 32.
    Newman MEJ (2006) Modularity and community structure in networks. Proc Nat Acad Sci 103:8577–8582.  https://doi.org/10.1073/pnas.0601602103 CrossRefGoogle Scholar
  33. 33.
    Zhou GX, Zhang JB, Mao JD, Zhang CZ, Chen L, Xin XL, Zhao BZ (2015) Mass loss and chemical structures of wheat and maize straws in response to ultraviolet-B radiation and soil contact. Sci Rep 5:11.  https://doi.org/10.1038/srep14851 Google Scholar
  34. 34.
    Baumann K, Marschner P, Smernik RJ, Baldock JA (2009) Residue chemistry and microbial community structure during decomposition of eucalypt, wheat and vetch residues. Soil Biol Biochem 41:1966–1975.  https://doi.org/10.1016/j.soilbio.2009.06.022 CrossRefGoogle Scholar
  35. 35.
    Barreiro A, Baath E, Diaz-Ravina M (2016) Bacterial and fungal growth in burnt acid soils amended with different high C/N mulch materials. Soil Biol Biochem 97:102–111.  https://doi.org/10.1016/j.soilbio.2016.03.009 CrossRefGoogle Scholar
  36. 36.
    Fanin N, Bertrand I (2016) Aboveground litter quality is a better predictor than belowground microbial communities when estimating carbon mineralization along a land-use gradient. Soil Biol Biochem 94:48–60.  https://doi.org/10.1016/j.soilbio.2015.11.007 CrossRefGoogle Scholar
  37. 37.
    Sauvadet M, Chauvat M, Fanina N, Coulibaly S, Bertrand I (2016) Comparing the effects of litter quantity and quality on soil biota structure and functioning: application to a cultivated soil in Northern France. Appl Soil Ecol 107:261–271.  https://doi.org/10.1016/j.apsoil.2016.06.010 CrossRefGoogle Scholar
  38. 38.
    Zhou GX, Zhang JB, Chen L, Zhang CZ, Yu ZH (2016) Temperature and straw quality regulate the microbial phospholipid fatty acid composition associated with straw decomposition. Pedosphere 26:386–398.  https://doi.org/10.1016/S1002-0160(15)60051-0 CrossRefGoogle Scholar
  39. 39.
    McGuire KL, Treseder KK (2010) Microbial communities and their relevance for ecosystem models: decomposition as a case study. Soil Biol Biochem 42:529–535.  https://doi.org/10.1016/j.soilbio.2009.11.016 CrossRefGoogle Scholar
  40. 40.
    Cleveland CC, Reed SC, Keller AB, Nemergut DR, O’Neill SP, Ostertag R, Vitousek PM (2014) Litter quality versus soil microbial community controls over decomposition: a quantitative analysis. Oecologia 174:283–294.  https://doi.org/10.1007/s00442-013-2758-9 CrossRefGoogle Scholar
  41. 41.
    Lu P, Lin YH, Yang ZQ, Xu YP, Tan F, Jia XD, Wang M, Xu DR, Wang XZ (2015) Effects of application of corn straw on soil microbial community structure during the maize growing season. J Basic Microbiol 55:22–32.  https://doi.org/10.1002/jobm.201300744 CrossRefGoogle Scholar
  42. 42.
    Navarro-Noya YE, Gomez-Acata S, Montoya-Ciriaco N, Rojas-Valdez A, Suarez-Arriaga MC, Valenzuela-Encinas C, Jimenez-Bueno N, Verhulst N, Govaerts B, Dendooven L (2013) Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem. Soil Biol Biochem 65:86–95.  https://doi.org/10.1016/j.soilbio.2013.05.009 CrossRefGoogle Scholar
  43. 43.
    Hu W, Zhang Q, Tian T, Li D, Cheng G, Mu J, Wu Q, Niu F, Stegen JC, An L, Feng H (2015) Relative roles of deterministic and stochastic processes in driving the vertical distribution of bacterial communities in a permafrost core from the Qinghai-Tibet Plateau, China. Plos One 10:1–19.  https://doi.org/10.1371/journal.pone.0145747 Google Scholar
  44. 44.
    Morais MC (2016) Efeito da remoção de quantidades de palha de cana-de-açúcar na biomassa e na comunidade microbiana do solo. Dissertation, University of São PauloGoogle Scholar
  45. 45.
    Lupatini M, Suleiman AKA, Jacques RJS, Antoniolli ZI, Ferreira AS, Kuramae EE, Roesch LFW (2014) Network topology reveals high connectance levels and few key microbial genera within soils. Front Environ Sci 2:1–11.  https://doi.org/10.3389/fenvs.2014.00010 CrossRefGoogle Scholar
  46. 46.
    Bauer WD, Robinson JB (2002) Disruption of bacterial quorum sensing by other organisms. Curr Opin Biotechnol 13:234–237.  https://doi.org/10.1016/S0958-1669(02)00310-5 CrossRefGoogle Scholar
  47. 47.
    Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310.  https://doi.org/10.1126/science.199.4335.1302 CrossRefGoogle Scholar
  48. 48.
    Sheil D, Burslem DFRP (2013) Defining and defending Connell’s intermediate disturbance hypothesis: a response to Fox. Trends Ecol Evol 28:571–572.  https://doi.org/10.1016/j.tree.2013.07.006 CrossRefGoogle Scholar
  49. 49.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Soil Science, “Luiz de Queiroz” College of AgricultureUniversity of São PauloPiracicabaBrazil
  2. 2.Federal Institute Goiano − Campus PossePosseBrazil
  3. 3.Center for Nuclear Energy in AgricultureUniversity of São PauloPiracicabaBrazil

Personalised recommendations