Advertisement

BioEnergy Research

, Volume 11, Issue 4, pp 727–747 | Cite as

Microalgal Biorefineries for Bioenergy Production: Can We Move from Concept to Industrial Reality?

  • Mariany C. Deprá
  • Aline M. dos Santos
  • Ihana A. Severo
  • Andriéli B. Santos
  • Leila Q. Zepka
  • Eduardo Jacob-Lopes
Article

Abstract

Biorefineries are commercial facilities that transform raw materials into commodities of considerable interest to the world bioeconomy. In addition, biorefineries have the potential to achieve favorable environmental characteristics, such as minimal greenhouse gas (GHG) emissions and a lower water footprint, compared to homologous fossil fuels. However, for this concept to become efficient and viable, the use of potentially abundant and specific renewable biological feedstocks should be considered, such as microalgae biomass and other generated products. However, there is an emerging need to consolidate industrial plants that are not only affected by market fluctuations but also aim to transform biological materials into industrially usable products. Thus, for a microalgae biorefinery to compete with the resilient oil refineries in the future, process integration in the supply chain is a promising engineering approach, associating all the components from the cultivation to obtain multiple products that are economically and environmentally sustainable. Therefore, the objective of this review is to compile issues related to microalgal biorefineries applied to bioenergy and biofuel production.

Keywords

Biorefinery Algae Energy Fuel Co-products 

Abbreviations

ABE

Acetone-butanol-ethanol

BASF

Badische Anilin & Soda Fabrik

DHA

Docosahexaenoic acid

EPA

Eicosapentaenoic acid

FAME

Fatty acid methyl esters

FAO

Food Agriculture Organization

GHG

Greenhouse gas

GWP

Global warming potential

LCA

Life cycle assessment

LCI

Life cycle inventory

LCIA

Life cycle impact analysis

LEA

Lipid extracted algae

MAAs

Mycosporine-like amino acids

NER

Net energy ratio

PUFA

Polyunsaturated fatty acids

TAG

Triacylglycerol

VOC

Volatile organic compounds

VCSS

Vapor compression steam stripping

WF

Water footprint

WHO

World Health Organization

References

  1. 1.
    IEA. International Energy Agency (2016) Energy technology perspectives—towards sustainable urban energy systems. OECD/IEA, Paris, p 16Google Scholar
  2. 2.
    Mathieu C. (2016) From COP21 to COP22: keeping up the momentum. Notes de l'IfriGoogle Scholar
  3. 3.
    Su Y, Song K, Zhang P, Su Y, Cheng J, Chen X (2017) Progress of microalgae biofuel’s commercialization. Renew Sust Energ Rev 74:402–411Google Scholar
  4. 4.
    Gonçalves AL, Pires JCM, Simões M (2016) Biotechnological potential of Synechocystis salina co-cultures with selected microalgae and cyanobacteria: nutrients removal, biomass and lipid production. Bioresour Technol 200:279–286PubMedGoogle Scholar
  5. 5.
    Maroneze MM, Siqueira SF, Vendruscolo RG, Wagner R, de Menezes CR, Zepka LQ et al (2016) The role of photoperiods on photobioreactors—a potential strategy to reduce costs. Bioresour Technol 219:493–499PubMedGoogle Scholar
  6. 6.
    Martinkus N, Wolcott M (2017) A framework for quantitatively assessing the repurpose potential of existing industrial facilities as a biorefinery. Biofuels Bioprod Biorefin 11:295–306Google Scholar
  7. 7.
    Carneiro MLNM, Pradelle F, Braga SL, Gomes MSP, Martins ARFA, Turkovics F et al (2017) Potential of biofuels from algae: comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA). Renew Sust Energ Rev 73:632–653Google Scholar
  8. 8.
    Budzianowski WM, Postawa K (2016) Total chain integration of sustainable biorefinery systems. Appl Energy 184:1432–1446Google Scholar
  9. 9.
    Jacob-Lopes E, Severo IA, Bizello RS, Barin JS, Menezes CRD, Cichoski AJ, et al. (2017) Process and system for re-using carbon dioxide transformed by photosynthesis into oxygen and hydrocarbons used in an integrated manner to increase the thermal efficiency of combustion systems. Patent WO2017112984 A1Google Scholar
  10. 10.
    Estime B, Ren D, Sureshkumar R (2017) Cultivation and energy efficient harvesting of microalgae using thermoreversible sol-gel transition. Sci Rep 7:1–9Google Scholar
  11. 11.
    Liu J, Song Y, Qiu W (2017) Oleaginous microalgae Nannochloropsis as a new model for biofuel production: review & analysis. Renew Sust Energ Rev 72:154–162Google Scholar
  12. 12.
    Kumar K, Ghosh S, Angelidaki I, Holdt SL, Karakashev DB, Morales MA et al (2016) Recent developments on biofuels production from microalgae and macroalgae. Renew Sust Energ Rev 65:235–249Google Scholar
  13. 13.
    Vasumathi KK, Premalatha M, Subramanian P (2012) Parameters influencing the design of photobioreactor for the growth of microalgae. Renew Sust Energ Rev 16:5443–5450Google Scholar
  14. 14.
    de Andrade GA, Berenguel M, Guzmán JL, Pagano DJ, Acién FG (2016) Optimization of biomass production in outdoor tubular photobioreactors. J Process Contr 37:58–69Google Scholar
  15. 15.
    Slegers PM, Lösing MB, Wijffels RH, van Straten G, van Boxtel AJB (2013) Scenario evaluation of open pond microalgae production. Algal Res 2:358–368Google Scholar
  16. 16.
    Liao JC, Mi L, Pontrelli S, Luo S (2016) Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat Rev Microbiol 14:288–304PubMedGoogle Scholar
  17. 17.
    Fernández I, Acién FG, Fernández JM, Guzmán JL, Magán JJ, Berenguel M (2012) Dynamic model of microalgal production in tubular photobioreactors. Bioresour Technol 126:172–181PubMedGoogle Scholar
  18. 18.
    Solimeno A, Acíen FG, García J (2017) Mechanistic model for design, analysis, operation and control of microalgae cultures: calibration and application to tubular photobioreactors. Algal Res 21:236–246Google Scholar
  19. 19.
    Singh RN, Sharma S (2012) Development of suitable photobioreactor for algae production—a review. Renew Sust Energ Rev 16:2347–2353Google Scholar
  20. 20.
    Jacob-Lopes E, Zepka LQ, Ramírez-Merida LG, Maroneze MM, Neves C. (2014) Bioprocess for the conversion of carbon dioxide from industrial emissions, bioproducts use thereof and hybrid photobioreactor. Patent WO 2016/041028 A1Google Scholar
  21. 21.
    Tao Q, Gao F, Qian C-Y, Guo X-Z, Zheng Z, Yang Z-H (2017) Enhanced biomass/biofuel production and nutrient removal in an algal biofilm airlift photobioreactor. Algal Res 21:9–15Google Scholar
  22. 22.
    Brasil BSAF, Silva FCP, Siqueira FG (2017) Microalgae biorefineries: the Brazilian scenario in perspective. New Biotechnol 39:90–98Google Scholar
  23. 23.
    Siqueira SF, Francisco ÉC, Queiroz MI, CRd M, Zepka LQ, Jacob-Lopes E (2016) Third generation biodiesel production from microalgae Phormidium autumnale. Braz J Chem Eng 33:427–433Google Scholar
  24. 24.
    Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718PubMedGoogle Scholar
  25. 25.
    Richardson JW, Johnson MD, Lacey R, Oyler J, Capareda S (2014) Harvesting and extraction technology contributions to algae biofuels economic viability. Algal Res 5:70–78Google Scholar
  26. 26.
    Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C et al (2010) An economic and technical evaluation of microalgal biofuels. Nature Biotechnol 28:126–128Google Scholar
  27. 27.
    Richardson JW, Johnson MD (2015) Financial feasibility analysis of NAABB developed technologies. Algal Res 10:16–24Google Scholar
  28. 28.
    Frank ED, Elgowainy A, Han J, Wang Z (2013) Life cycle comparison of hydrothermal liquefaction and lipid extraction pathways to renewable diesel from algae. Mitigation Adaptation Strategies Global Change 18:137–158Google Scholar
  29. 29.
    Milledge JJ, Heaven S (2013) A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Biotechnol 12:165–178Google Scholar
  30. 30.
    Reynolds CS (1984) The ecology of freshwater phytoplankton. Cambridge University Press, CambridgeGoogle Scholar
  31. 31.
    Molina-Grima E, Belarbi EH, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515PubMedGoogle Scholar
  32. 32.
    Zamalloa C, Vulsteke E, Albrecht J, Verstraete W (2011) The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresour Technol 102:1149–1158PubMedGoogle Scholar
  33. 33.
    Chisti Y (2013) Raceways-based production of algal crude oil. Green 3:195–216Google Scholar
  34. 34.
    Shen Y, Yuan W, Pei ZJ, Wu Q, Mao E (2009) Microalgae mass production methods. ​Transactions of the ASABE 52:1275-1287Google Scholar
  35. 35.
    Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232Google Scholar
  36. 36.
    Sahay S, Braganza VJ (2016) Microalgae based biodiesel production—current and future scenario. J Exp Sci 7:31–35Google Scholar
  37. 37.
    Jacob-Lopes E, Zepka LQ, Pinto LAA, Queiroz MI (2007) Characteristics of thin-layer drying of the cyanobacterium Aphanothece microscopica Nägeli. Chem Eng Process Process Intensif 46:63–69Google Scholar
  38. 38.
    Prakash J, Pushparaj B, Carlozzi P, Torzillo G, Montaini E, Materassi R (1997) Microalgal biomass drying by a simple solar device. Int J Sol Energy 18:303–311Google Scholar
  39. 39.
    Desmorieux H, Decaen N (2005) Convective drying of spirulina in thin layer. J Food Eng 66:497–503Google Scholar
  40. 40.
    Leach G, Oliveira G, Morais R (1998) Spray-drying of Dunaliella salina to produce a b-carotene rich powder. J Ind Microbiol Biotechnol 20:82–85Google Scholar
  41. 41.
    Pandey A, Höfer R, Taherzadeh M, Nampoothiri KM, Larroche C (Eds) (2015) Industrial biorefineries and white biotechnology. ElsevierGoogle Scholar
  42. 42.
    Nagle N, Lemke P (1990) Production of methyl ester fuel from microalgae. Appl Biochem Biotechnol 24/25:355–361Google Scholar
  43. 43.
    Darzins A, Pienkos P, Edye, L. (2010) Current status and potential for algal biofuels production. A report to IEA bioenergy task 39Google Scholar
  44. 44.
    Patil PD, Gude VG, Mannarswamy A, Deng S, Cooke P, Munson-McGee S, Rhodes I, Lammers P, Nirmalakhandan N (2011) Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresour Technol 102:118–122PubMedGoogle Scholar
  45. 45.
    Sathish A, Sims RC (2012) Biodiesel from mixed culture algae via a wet lipid extraction procedure. Bioresour Technol 118:643–647PubMedGoogle Scholar
  46. 46.
    Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24:815–820PubMedGoogle Scholar
  47. 47.
    Widjaja A, Chien C-C, Ju Y-H (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40:13–20Google Scholar
  48. 48.
    Heger M (2009) A new processing scheme for algae biofuels. MIT Technol RevGoogle Scholar
  49. 49.
    McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46PubMedGoogle Scholar
  50. 50.
    Tsukahara K, Sawayama S (2005) Liquid fuel production using microalgae. J Jpn Pet Inst 48:251–259Google Scholar
  51. 51.
    Khoo HH, Koh CY, Shaik MS, Sharratt PN (2013) Bioenergy co-products derived from microalgae biomass via thermochemical conversion–life cycle energy balances and CO2 emissions. Bioresour Technol 143:298–307PubMedGoogle Scholar
  52. 52.
    Strezov V, Evans TJ, Nelson PF. (2006) Carbonization of biomass fuels. In: Biomass and bioenergy: new research. Nova Sci Publishers, Inc., New YorkGoogle Scholar
  53. 53.
    McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54PubMedGoogle Scholar
  54. 54.
    Goyal HB, Seal D, Saxena RC (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sust Energ Rev 12:504–517Google Scholar
  55. 55.
    Clark JH, Deswarte FEI (2008) The biorefinery concept—an integrated approach. Introduction to Chemicals from Biomass: John Wiley Sons, Ltd, pp 1–20Google Scholar
  56. 56.
    Amin S (2009) Review on biofuel oil and gas production processes from microalgae. Energy Convers Manag 50:1834–1840Google Scholar
  57. 57.
    Patil V, Tran K-Q, Giselrød HR (2008) Towards sustainable production of biofuels from microalgae. Int J Mol Sci 9:1188–1195PubMedPubMedCentralGoogle Scholar
  58. 58.
    Miao X, Wu Q, Yang C (2004) Fast pyrolysis of microalgae to produce renewable fuels. J Anal Appl Pyrolysis 71:855–863Google Scholar
  59. 59.
    Zhang Q, Chang J, Wang T, Xu Y (2007) Review of biomass pyrolysis oil properties and upgrading research. Energy Convers Manag 48:87–92Google Scholar
  60. 60.
    Ronsse F, Nachenius RW, Prins W (2015) Carbonization of biomass. In: Pandey A, Bhaskar T, Stöcker M, Sukumaran R (eds) Recent advances in thermochemical conversion of biomass. Elsevier 293–324Google Scholar
  61. 61.
    Friedl A, Padouvas E, Rotter H, Varmuza K (2005) Prediction of heating values of biomass fuel from elemental composition. Anal Chim Acta 554:191–198Google Scholar
  62. 62.
    Mohan D, Pittman CU Jr, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20:848–889Google Scholar
  63. 63.
    Kleinert M, Barth T (2008) Towards a lignocellulosic biorefinery: direct one-step conversion of lignin to hydrogen-enriched biofuel. Energy Fuel 22:1371–1379Google Scholar
  64. 64.
    DOE (2002) Department of energy, office of energy efficiency and renewable energy. Roadmap for Biomass Technologies in the United StatesGoogle Scholar
  65. 65.
    European Commission (1999) Biomass conversion technologies—achievements and prospects for heat and power generation. In: directorate EC, editor: general science, research and development 178Google Scholar
  66. 66.
    Demirbaş A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. EnergConvers Manag 42:1357–1378Google Scholar
  67. 67.
    Agarwal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 33:233–271Google Scholar
  68. 68.
    Schuchardt U, Sercheli R, Vargas RM (1998) Transesterification of vegetable oils: a review. J Braz Chem Soc 9:199–210Google Scholar
  69. 69.
    Klemeš JJ, Varbanov PS, Kravanja Z (2013) Recent developments in process integration. Chem Eng Res Des 91:2037–2053Google Scholar
  70. 70.
    Francisco ÉC, Teixeira Franco T, Queiroz Zepka L, Jacob-Lopes E (2015) From waste-to-energy: the process integration and intensification for bulk oil and biodiesel production by microalgae. J Environ Chem Eng 3:482–487Google Scholar
  71. 71.
    Moncada BJ, Aristizábal MV, Cardona ACA (2016) Design strategies for sustainable biorefineries. Biochem Eng J 116:122–134Google Scholar
  72. 72.
    Moncada J, Cardona CA, Rincón LE (2015) Design and analysis of a second and third generation biorefinery: the case of castorbean and microalgae. Bioresour Technol 198:836–843PubMedGoogle Scholar
  73. 73.
    Sengmee D, Cheirsilp B, Suksaroge TT, Prasertsan P (2017) Biophotolysis-based hydrogen and lipid production by oleaginous microalgae using crude glycerol as exogenous carbon source. Int J Hydrog Energy 42:1970–1976Google Scholar
  74. 74.
    Guldhe A, Ansari FA, Singh P, Bux F (2017) Heterotrophic cultivation of microalgae using aquaculture wastewater: a biorefinery concept for biomass production and nutrient remediation. Ecol Eng 99:47–53Google Scholar
  75. 75.
    Santos AM, Roso GR, Menezes CR, Queiroz MI, Zepka LQ, Jacob Lopes E (2017) The bioeconomy of microalgal heterotrophic bioreactors applied to agroindustrial wastewater treatment. Desalin Water Treat 64:12–20Google Scholar
  76. 76.
    Reyimu Z, Özçimen D (2017) Batch cultivation of marine microalgae Nannochloropsis oculata and Tetraselmis suecica in treated municipal wastewater toward bioethanol production. J Clean Prod 150:40–46Google Scholar
  77. 77.
    Ji M-K, Yun H-S, Park Y-T, Kabra AN, Oh I-H, Choi J (2015) Mixotrophic cultivation of a microalga Scenedesmus obliquus in municipal wastewater supplemented with food wastewater and flue gas CO2 for biomass production. J Environ Manag 159:115–120Google Scholar
  78. 78.
    Kao C-Y, Chen T-Y, Chang Y-B, Chiu T-W, Lin H-Y, Chen C-D et al (2014) Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresour Technol 166:485–493PubMedGoogle Scholar
  79. 79.
    Farooq W, Moon M, B-g R, Suh WI, Shrivastav A, Park MS et al (2015) Effect of harvesting methods on the reusability of water for cultivation of Chlorella vulgaris, its lipid productivity and biodiesel quality. Algal Res 8:1–7Google Scholar
  80. 80.
    Zhao L, Qi Y, Chen G (2015) Isolation and characterization of microalgae for biodiesel production from seawater. Bioresour Technol 184:42–46PubMedGoogle Scholar
  81. 81.
    Cho S, Luong TT, Lee D, Oh Y-K, Lee T (2011) Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production. Bioresour Technol 102:8639–8645PubMedGoogle Scholar
  82. 82.
    Aziz M, Oda T, Kashiwagi T (2014) Integration of energy-efficient drying in microalgae utilization based on enhanced process integration. Energy 70:307–316Google Scholar
  83. 83.
    Song C, Chen G, Ji N, Liu Q, Kansha Y, Tsutsumi A (2015) Biodiesel production process from microalgae oil by waste heat recovery and process integration. Bioresour Technol 193:192–199PubMedGoogle Scholar
  84. 84.
    Severo IA, Deprá MC, Barin JS, Wagner R, Menezes CRD, Zepka LQ, Jacob-Lopes E (2018) Bio-combustion of petroleum coke: the process integration with photobioreactors. Chem Eng Sci 177:422–430Google Scholar
  85. 85.
    El-Halwagi MM. (2013) Conserving material resources through process integration: material conservation networks. Handbook of process integration (PI): Woodhead Publishing, pp 422–439Google Scholar
  86. 86.
    Fresewinkel M, Rosello R, Wilhelm C, Kruse O, Hankamer B, Posten C (2014) Integration in microalgal bioprocess development: design of efficient, sustainable, and economic processes. Eng Life Sci 14:560–573Google Scholar
  87. 87.
    Das D. (2015) Algal Biorefinery: An Integrated Approach, 1st edn. Springer International Publishing, p 467Google Scholar
  88. 88.
    Dunn RF, El-Halwagi MM (2003) Process integration technology review: background and applications in the chemical process industry. J Chem Technol Biotechnol 78:1011–1021Google Scholar
  89. 89.
    Razzak SA, Hossain MM, Lucky RA, Bassi AS, de Lasa H (2013) Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—a review. Renew Sust Energ Rev 27:622–653Google Scholar
  90. 90.
    Yuan Z, Eden MR (2015) Recent advances in optimal design of thermochemical conversion of biomass to chemicals and liquid fuels. Curr Opin Chem Eng 10:70–76Google Scholar
  91. 91.
    Demirbas MF (2011) Biofuels from algae for sustainable development. Appl Energy 88:3473–3480Google Scholar
  92. 92.
    Tabatabaei M, Tohidfar M, Jouzani GS, Safarnejad M, Pazouki M (2011) Biodiesel production from genetically engineered microalgae: future of bioenergy in Iran. Renew Sust Energ Rev 15:1918–1927Google Scholar
  93. 93.
    Cheah WY, Ling TC, Juan JC, Lee D-J, Chang J-S, Show PL (2016) Biorefineries of carbon dioxide: from carbon capture and storage (CCS) to bioenergies production. Bioresour Technol 215:346–356PubMedPubMedCentralGoogle Scholar
  94. 94.
    Baicha Z, Salar-García MJ, Ortiz-Martínez VM, Hernández-Fernández FJ, de los Ríos AP, Labjar N et al (2016) A critical review on microalgae as an alternative source for bioenergy production: a promising low cost substrate for microbial fuel cells. Fuel Process Technol 154:104–116Google Scholar
  95. 95.
    He Q, Yang H, Hu C (2016) Culture modes and financial evaluation of two oleaginous microalgae for biodiesel production in desert area with open raceway pond. Bioresour Technol 218:571–579PubMedGoogle Scholar
  96. 96.
    Wen X, Du K, Wang Z, Peng X, Luo L, Tao H, Xu Y, Zhang D, Geng Y, Li Y (2016) Effective cultivation of microalgae for biofuel production: a pilot-scale evaluation of a novel oleaginous microalga Graesiella sp. WBG-1. Biotechnol Biofuels 9:123PubMedPubMedCentralGoogle Scholar
  97. 97.
    Cheng P, Wang Y, Liu T, Liu D (2017) Biofilm attached cultivation of Chlorella pyrenoidosa is a developed system for swine wastewater treatment and lipid production. Front Plant Sci 8:1594PubMedPubMedCentralGoogle Scholar
  98. 98.
    Damergi E, Schwitzguébel J-P, Refardt D, Sharma S, Holliger C, Ludwig C (2017) Extraction of carotenoids from Chlorella vulgaris using green solvents and syngas production from residual biomass. Algal Res 25:488–495Google Scholar
  99. 99.
    Francisco ÉC, Neves DB, Jacob-Lopes E, Franco TT (2010) Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. J Chem Technol Biotechnol 85:395–403Google Scholar
  100. 100.
    Jacob-Lopes E, Franco TT (2013) From oil refinery to microalgal biorefinery. J CO2 Util 2:1–7Google Scholar
  101. 101.
    Converti A, Oliveira RPS, Torres BR, Lodi A, Zilli M (2009) Biogas production and valorization by means of a two-step biological process. Bioresour Technol 100:5771–5776PubMedGoogle Scholar
  102. 102.
    Pham H-M, Kwak HS, Hong M-E, Lee J, Chang WS, Sim SJ (2017) Development of an X-shape airlift photobioreactor for increasing algal biomass and biodiesel production. Bioresour Technol 239:211–218PubMedGoogle Scholar
  103. 103.
    Belotti G, Caprariis BD, Filippis PD, Scarsella M, Verdone N (2014) Effect of Chlorella vulgaris growing conditions on bio-oil production via fast pyrolysis. Biomass Bioenergy 61:187–195Google Scholar
  104. 104.
    Ashokkumar V, Salam Z, Tiwari ON, Chinnasamy S, Mohammed S, Ani FN (2015) An integrated approach for biodiesel and bioethanol production from Scenedesmus bijugatus cultivated in a vertical tubular photobioreactor. Energy Convers Manag 101:778–786Google Scholar
  105. 105.
    Oncel S, Kose A (2014) Comparison of tubular and panel type photobioreactors for biohydrogen production utilizing Chlamydomonas reinhardtii considering mixing time and light intensity. Bioresour Technol 151:265–270PubMedGoogle Scholar
  106. 106.
    Bazdar E, Roshandel R, Yaghmaei S, Mardanpour MM (2018) The effect of different light intensities and light/dark regimes on the performance of photosynthetic microalgae microbial fuel cell. Bioresour Technol 261:350–360PubMedGoogle Scholar
  107. 107.
    Wang Y, Guo W-Q, Lo Y-C, Chang J-S, Ren N-Q (2014) Characterization and kinetics of bio-butanol production with Clostridium acetobutylicum ATCC824 using mixed sugar medium simulating microalgae-based carbohydrates. Biochem Eng J 91:220–230Google Scholar
  108. 108.
    de Jesus SS, Filho RM (2017) Potential of algal biofuel production in a hybrid photobioreactor. Chem Eng Sci 171:282–292Google Scholar
  109. 109.
    Harun R, Danquah MK (2011) Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochem 46:304–309Google Scholar
  110. 110.
    Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131PubMedGoogle Scholar
  111. 111.
    Demirbas A, Demirbas MF (2010) Algae energy—algae as a new source of biodiesel, 1st edn. Springer-Verlag, London, p 194Google Scholar
  112. 112.
    Cuellar-Bermudez SP, Romero-Ogawa MA, Rittmann BE, Parra-Saldivar R (2014) Algae biofuels production processes, carbon dioxide fixation and biorefinery concept. J Pet Environ Biotechnol 5:185Google Scholar
  113. 113.
    Powell EE, Hill GA (2009) Economic assessment of an integrated bioethanol–biodiesel–microbial fuel cell facility utilizing yeast and photosynthetic algae. Chem Eng Res Des 87:1340–1348Google Scholar
  114. 114.
    Reijnders L (2018) Biofuels from microalgae: biodiesel. In: Jacob-Lopes E, Zepka LQ, Queiroz MI (eds) Energy from microalgae, 1st edn. Springer, Switzerland, pp 171–180Google Scholar
  115. 115.
    Tasić MB, Pinto LFR, Klein BC, Veljković VB, Filho RM (2016) Botryococcus braunii for biodiesel production. Renew Sust Energ Rev 64:260–270Google Scholar
  116. 116.
    Griffiths MJ, van Hille RP, Harrison STL (2012) Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. J Appl Phycol 24:989–1001Google Scholar
  117. 117.
    García-Cubero R, Cabanelas ITD, Sijtsma L, Kleinegris DMM, Barbosa MJ (2018) Production of exopolysaccharide by Botryococcus braunii CCALA 778 under laboratory simulated Mediterranean climate conditions. Algal Res 29:330–336Google Scholar
  118. 118.
    Slade R, Bauen A (2013) Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53:29–38Google Scholar
  119. 119.
    Kumar D, Murthy GS (2011) Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnol Biofuels 4:27PubMedPubMedCentralGoogle Scholar
  120. 120.
    Harun R, Danquah MK, Forde GM (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85:199–203Google Scholar
  121. 121.
    Bux F, Chisti Y. (2016) Algae biotechnology—products and processes, 1st edn. Springer International Publishing, p 344Google Scholar
  122. 122.
    Chen C-Y, Zhao X-Q, Yen H-W, Ho S-H, Cheng C-L, Lee D-J et al (2013) Microalgae-based carbohydrates for biofuel production. Biochem Eng J 78:1–10Google Scholar
  123. 123.
    Ho S-H, Chen C-Y, Chang J-S (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252PubMedGoogle Scholar
  124. 124.
    Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzym Microb Technol 27:631–635Google Scholar
  125. 125.
    Hernández D, Riaño B, Coca M, García-González MC (2015) Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chem Eng J 262:939–945Google Scholar
  126. 126.
    Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673–690PubMedGoogle Scholar
  127. 127.
    Bastos RG (2018) Biofuels from microalgae: bioethanol. In: Jacob-Lopes E, Zepka LQ, Queiroz MI (eds) Energy from microalgae, 1st edn. Springer, Switzerland, pp 229–246Google Scholar
  128. 128.
    Trivedi J, Aila M, Bangwal DP, Kaul S, Garg MO (2015) Algae based biorefinery—how to make sense? Renew Sust Energ Rev 47:295–307Google Scholar
  129. 129.
    Savage N (2011) Fuel options: the ideal biofuel. Nature 474:S9–S11PubMedGoogle Scholar
  130. 130.
    Knoshaug EP, Zhang M (2009) Butanol tolerance in a selection of microorganisms. Appl Biochem Biotechnol 153:13–20PubMedGoogle Scholar
  131. 131.
    Singh H, Das D (2018) Biofuels from microalgae: biohydrogen. In: Jacob-Lopes E, Zepka LQ, Queiroz MI (eds) Energy from microalgae, 1st edn. Springer, Switzerland, pp 201–228Google Scholar
  132. 132.
    Passos F, Mota C, Donoso-Bravo A, Astals S, Jeison D, Muñoz R (2018) Biofuels from microalgae: biomethane. In: Jacob-Lopes E, Zepka LQ, Queiroz MI (eds) Energy from microalgae, 1st edn. Springer, Switzerland, pp 247–270Google Scholar
  133. 133.
    Das D, Veziroglu TN (2008) Advances in biological hydrogen production processes. Int J Hydrog Energy 33:6046–6057Google Scholar
  134. 134.
    Nagarajan D, Lee D-J, Kondo A, Chang J-S (2017) Recent insights into biohydrogen production by microalgae—from biophotolysis to dark fermentation. Bioresour Technol 227:373–387Google Scholar
  135. 135.
    Khetkorn W, Rastogi RP, Incharoensakdi A, Lindblad P, Madamwar D, Pandey A, Larroche C (2017) Microalgal hydrogen production—a review. Bioresour Technol 243:1194–1206PubMedPubMedCentralGoogle Scholar
  136. 136.
    Rashid N, Ur Rehman MS, Sadiq M, Mahmood T, Han J-I (2014) Current status, issues and developments in microalgae derived biodiesel production. Renew Sust Energ Rev 40:760–778Google Scholar
  137. 137.
    Leonzio G (2016) Upgrading of biogas to bio-methane with chemical absorption process: simulation and environmental impact. J Clean Prod 131:364–375Google Scholar
  138. 138.
    Chen G, Zhao L, Qi Y (2015) Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review. Appl Energy 137:282–291Google Scholar
  139. 139.
    López-González D, Puig-Gamero M, Acién FG, García-Cuadra F, Valverde JL, Sanchez-Silva L (2015) Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils. Renew Sust Energ Rev 51:1752–1770Google Scholar
  140. 140.
    Saber M, Nakhshiniev B, Yoshikawa K (2016) A review of production and upgrading of algal bio-oil. Renew Sust Energ Rev 58:918–930Google Scholar
  141. 141.
    Xu L, Zhao Y, Doherty L, Hu Y, Hao X (2016) The integrated processes for wastewater treatment based on the principle of microbial fuel cells: a review. Crit Rev Environ Sci Technol 46:60–91Google Scholar
  142. 142.
    Singh S, Suresh S (2016) A review on various microbial fuel cells (MFCs) for power generation. J Biofuels Bioenergy 2:16–35Google Scholar
  143. 143.
    Severo IA, Barin JS, Wagner R, Zepka LQ, Jacob-Lopes E (2018) Biofuels from microalgae: photobioreactor exhaust gases in Oxycombustion systems. In: Jacob-Lopes E, Zepka LQ, Queiroz MI (eds) Energy from microalgae, 1st edn. Springer, Switzerland, pp 271–290Google Scholar
  144. 144.
    Zhu L (2015) Biorefinery as a promising approach to promote microalgae industry: an innovative framework. Renew Sust Energ Rev 41:1376–1384Google Scholar
  145. 145.
    Suganya T, Varman M, Masjuki HH, Renganathan S (2016) Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew Sust Energ Rev 55:909–941Google Scholar
  146. 146.
    Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC et al (2017) Microalgae biorefinery: high value products perspectives. Bioresour Technol 229:53–62PubMedGoogle Scholar
  147. 147.
    Budzianowski WM (2017) High-value low-volume bioproducts coupled to bioenergies with potential to enhance business development of sustainable biorefineries. Renew Sust Energ Rev 70:793–804Google Scholar
  148. 148.
    Safi C, Zebib B, Merah O, Pontalier P-Y, Vaca-Garcia C (2014) Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renew Sust Energ Rev 35:265–278Google Scholar
  149. 149.
    National Nutrient Database for Standard Reference. United States (2017). Available in: http://ndb.nal.usda.gov/
  150. 150.
    Parsaeimehr A, Mancera-Andrade EI, Robledo-Padilla F, Iqbal HM, Parra-Saldivar R (2017) A chemical approach to manipulate the algal growth, lipid content and high-value alpha-linolenic acid for biodiesel production. Algal Res 26:312–322Google Scholar
  151. 151.
    Anahas AMP, Muralithara G (2018) Characterization of heterocystous cyanobacterial strains for biodiesel production based on fatty acid content analysis and hydrocarbon production. Energy Convers Manag 157:423–437Google Scholar
  152. 152.
    Zhu L (2014) The combined production of ethanol and biogas from microalgal residuals to sustain microalgal biodiesel: a theoretical evaluation. Biofuels Bioprod Biorefin 8:7–15Google Scholar
  153. 153.
    Vanthoor-Koopmans M, Wijffels RH, Barbosa MJ, Eppink MHM (2013) Biorefinery of microalgae for food and fuel. Bioresour Technol 135:142–149PubMedGoogle Scholar
  154. 154.
    Zhu LD, Hiltunen E (2016) Application of livestock waste compost to cultivate microalgae for bioproducts production: a feasible framework. Renew Sust Energ Rev 54:1285–1290Google Scholar
  155. 155.
    Ratledge C, Wynn JP. (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. In: Allen I, Laskin JWB, Geoffrey MG (eds) Advances in applied microbiology. Academic Press pp 1–52Google Scholar
  156. 156.
    Bellou S, Baeshen MN, Elazzazy AM, Aggeli D, Sayegh F, Aggelis G (2014) Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol Adv 32:1476–1493PubMedGoogle Scholar
  157. 157.
    Yen H-W, Hu IC, Chen C-Y, Ho S-H, Lee D-J, Chang J-S (2013) Microalgae-based biorefinery—from biofuels to natural products. Bioresour Technol 135:166–174PubMedGoogle Scholar
  158. 158.
    Karemore A, Sen R (2016) Downstream processing of microalgal feedstock for lipid and carbohydrate in a biorefinery concept: a holistic approach for biofuel applications. RSC Adv 6:29486–29496Google Scholar
  159. 159.
    Borowitzka MA. (1988) Vitamins and fine chemicals from microalgae. In Microalgal Biotechnology. Cambridge, Cambridge Univesity Press, pp 153–196Google Scholar
  160. 160.
    Doncheck JA, Huss RJ, Running JA, Skatrud TJ (1996) L-ascorbic acid containing biomass of Chlorella pyrenoidosa. Patent US US5521090 AGoogle Scholar
  161. 161.
    Bonnet S, Webb EA, Panzeca C, Karl DM, Capone DG, Wilhelmy SAS (2010) Vitamin B12 excretion by cultures of the marine cyanobacteria Crocosphaera and Synechococcus. Limnol Oceanogr 55:1959–1964Google Scholar
  162. 162.
    Roso GR, Queiroz MI, Streit NM, Menezes CR, Zepka LQ, Jacob Lopes E (2015) The bioeconomy of microalgal carotenoid-rich oleoresins produced in Agroindustrial biorefineries. J Chem Eng Process Technol:6Google Scholar
  163. 163.
    Streit N, Ramírez-Merida LG, Zepka LQ, Jacob Lopes E, Queiroz MI (2015) Producción de pigmentos naturales (clorofila-a) en biorrefinerias agroindustriales. Maderas: Cienc Tecnol 8:27–34Google Scholar
  164. 164.
    Bermejo Román R, Alvárez-Pez JM, Acién Fernández FG, Molina Grima E (2002) Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. J Biotechnol 93:73–85PubMedGoogle Scholar
  165. 165.
    Viskari PJ, Colyer CL (2003) Rapid extraction of phycobiliproteins from cultured cyanobacteria samples. Anal Biochem 319:263–271PubMedGoogle Scholar
  166. 166.
    Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96PubMedGoogle Scholar
  167. 167.
    Frinhani EDMD, Oliveira RCD (2006) The applicability of natural colorants in papermaking. TAPPI J 5:1–7Google Scholar
  168. 168.
    Mortensen A, Geppel A (2007) HPLC–MS analysis of the green food colorant sodium copper chlorophyllin. Innov Food Sci Emerg Technol 8:419–425Google Scholar
  169. 169.
    Fernandes AS, Nogara GP, Menezes CR, Cichoski AJ, Mercadante AZ, Jacob-Lopes E et al (2017) Identification of chlorophyll molecules with peroxyl radical scavenger capacity in microalgae Phormidium autumnale using ultrasound-assisted extraction. Food Res Int 99:1036–1041PubMedGoogle Scholar
  170. 170.
    Li J, Liu Y, Cheng JJ, Mos M, Daroch M (2015) Biological potential of microalgae in China for biorefinery-based production of biofuels and high value compounds. New Biotechnol 32:588–596Google Scholar
  171. 171.
    Del Campo JA, Moreno J, Rodrı́guez H, Angeles Vargas M, Jn R, Guerrero MG (2000) Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol 76:51–59PubMedGoogle Scholar
  172. 172.
    Rodrigues DB, Menezes CR, Mercadante AZ, Jacob-Lopes E, Zepka LQ (2015) Bioactive pigments from microalgae Phormidium autumnale. Food Res Int 77:273–279Google Scholar
  173. 173.
    Singh BB, Shakil NA, Kumar J, Walia S, Kar A (2015) Development of slow release formulations of β-carotene employing amphiphilic polymers and their release kinetics study in water and different pH conditions. J Food Sci Technol 52:8068–8076PubMedPubMedCentralGoogle Scholar
  174. 174.
    Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216PubMedGoogle Scholar
  175. 175.
    García-González M, Moreno J, Manzano JC, Florencio FJ, Guerrero MG (2005) Production of Dunaliella salina biomass rich in 9-cis-β-carotene and lutein in a closed tubular photobioreactor. J Biotechnol 115:81–90PubMedGoogle Scholar
  176. 176.
    Becker W (2007) Microalgae in human and animal nutrition. Handbook of microalgal culture. Blackwell Publishing Ltd, pp 312–51Google Scholar
  177. 177.
    Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756Google Scholar
  178. 178.
    Markets and Markets (2017) Carotenoids market by type (astaxanthin, beta-carotene, canthaxanthin, lutein, lycopene, & zeaxanthin), source (synthetic and natural), application (supplements, food, feed, and cosmetics), & by region—global trends & forecasts to 2021. 2018. Available in: http://www.marketsandmarkets.com
  179. 179.
    Lavens P, Sorgeloos P (1996) Manual on the production and use of live food for aquaculture. FAO Fish Tech Pap 361:7–42Google Scholar
  180. 180.
    Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648PubMedGoogle Scholar
  181. 181.
    Santos AB, Fernandes AS, Wagner R, Jacob-Lopes E, Zepka LQ (2016) Biogeneration of volatile organic compounds produced by Phormidium autumnale in heterotrophic bioreactor. J Appl Phycol 28:1561–1570Google Scholar
  182. 182.
    Berger RG (2009) Biotechnology of flavours—the next generation. Biotechnol Lett 31:1651–1659PubMedGoogle Scholar
  183. 183.
    Rodrigues DB, Flores ÉMM, Barin JS, Mercadante AZ, Jacob-Lopes E, Zepka LQ (2014) Production of carotenoids from microalgae cultivated using agroindustrial wastes. Food Res Int 65:144–148Google Scholar
  184. 184.
    Odjadjare EC, Mutanda T, Olaniran AO (2015) Potential biotechnological application of microalgae: a critical review. Crit Rev Biotechnol 37:37–52PubMedGoogle Scholar
  185. 185.
    Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1:763–784PubMedPubMedCentralGoogle Scholar
  186. 186.
    Deprá MC, Zepka LQ, Jacob-Lopes E (2017) Introductory chapter: life cycle assessment as a fundamental tool to define the biofuel performance. In: Frontiers in bioenergy and biofuels. InTechGoogle Scholar
  187. 187.
    ISO (2006) International Organization for Standardization. SS-EN ISO 14040. Environmental management—life cycle assessment—principles and framework, 2nd edn. GenevaGoogle Scholar
  188. 188.
    Deprá MC, Jacob-Lopes E, Zepka LQ (2018) Life cycle assessment of biofuels from microalgae. In: Jacob-Lopes E, Zepka LQ, Queiroz MI (eds) Energy from microalgae, 1st edn. Springer, Switzerland, pp 141–155Google Scholar
  189. 189.
    Curran MA (2017) Goal and scope definition in life cycle assessment, 1st edn. Springer, Netherlands, pp 1–62Google Scholar
  190. 190.
    Pragya N, Pandey KK (2016) Life cycle assessment of green diesel production from microalgae. Renew Energy 86:623–632Google Scholar
  191. 191.
    Hoekstra AY (2016) A critique on the water-scarcity weighted water footprint in LCA. Ecol Indic 66:564–573Google Scholar
  192. 192.
    Mekonnen MM, Hoekstra AY (2010) A global and high-resolution assessment of the green, blue and grey water footprint of wheat. Hydrol Earth Syst Sci 14:1259–1276Google Scholar
  193. 193.
    Garcia D, You F (2015) Life cycle network modeling framework and solution algorithms for systems analysis and optimization of the water-energy nexus. Processes 3:514–539Google Scholar
  194. 194.
    Laratte B, Guillaume B, Kim J, Birregah B (2014) Modeling cumulative effects in life cycle assessment: the case of fertilizer in wheat production contributing to the global warming potential. Sci Total Environ 481:588–595PubMedGoogle Scholar
  195. 195.
    Pawar S (2016) Effectiveness mapping of open raceway pond and tubular photobioreactors for sustainable production of microalgae biofuel. Renew Sust Energ Rev 62:640–653Google Scholar
  196. 196.
    Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101:1406–1413PubMedGoogle Scholar
  197. 197.
    Handler RM, Canter CE, Kalnes TN, Lupton FS, Kholiqov O, Shonnard DR et al (2012) Evaluation of environmental impacts from microalgae cultivation in open-air raceway ponds: analysis of the prior literature and investigation of wide variance in predicted impacts. Algal Res 1:83–92Google Scholar
  198. 198.
    Kliphuis AMJ, de Winter L, Vejrazka C, Martens DE, Janssen M, Wijffels RH (2010) Photosynthetic efficiency of Chlorella sorokiniana in a turbulently mixed short light-path photobioreactor. Biotechnol Prog 26:687–696PubMedGoogle Scholar
  199. 199.
    Sevigné Itoiz E, Fuentes-Grünewald C, Gasol CM, Garcés E, Alacid E, Rossi S et al (2012) Energy balance and environmental impact analysis of marine microalgal biomass production for biodiesel generation in a photobioreactor pilot plant. Biomass Bioenergy 39:324–335Google Scholar
  200. 200.
    Chung Y-S, Lee J-W, Chung C-H (2017) Molecular challenges in microalgae towards cost-effective production of quality biodiesel. Renew Sust Energ Rev 74:139–144Google Scholar
  201. 201.
    Shriwastav A, Gupta SK (2017) Key issues in pilot scale production, harvesting and processing of algal biomass for biofuels. In: Gupta SK, Malik A, Bux F (eds) Algal biofuels: recent advances and future prospects. Springer International Publishing, Cham, pp 247–258Google Scholar
  202. 202.
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306PubMedPubMedCentralGoogle Scholar
  203. 203.
    Ruiz J, Olivieri G, de Vree J, Bosma R, Willems P, Reith JH et al (2016) Towards industrial products from microalgae. Energy Environ Sci 9:3036–3043Google Scholar
  204. 204.
    Venkatesh A, Jaramillo P, Griffin WM, Matthews HS (2011) Uncertainty in life cycle greenhouse gas emissions from United States natural gas end-uses and its effects on policy. Environ Sci Technol 45:8182–8189PubMedGoogle Scholar
  205. 205.
    Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 2:012701Google Scholar
  206. 206.
    Wan C, Alam MA, Zhao X-Q, Zhang X-Y, Guo S-L, Ho S-H et al (2015) Current progress and future prospect of microalgal biomass harvest using various flocculation technologies. Bioresour Technol 184:251–257PubMedGoogle Scholar
  207. 207.
    IEA. International Energy Agency (2017) State of technology review – algae bioenergy. Available in: http://www.ieabioenergy.com/publications/state-of-technology-review-algae-bioenergy/2017/
  208. 208.
    Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799PubMedGoogle Scholar
  209. 209.
    Austic RE, Mustafa A, Jung B, Gatrell S, Lei XG (2013) Potential and limitation of a new defatted diatom microalgal biomass in replacing soybean meal and corn in diets for broiler chickens. J Agric Food Chem 61:7341–7348PubMedGoogle Scholar
  210. 210.
    FAO/WHO (1973) Energy and protein requirements: report of a joint FAO/WHO ad hoc expert committee. Food and Agriculture Organization of the UN, Rome, p 52Google Scholar
  211. 211.
    Wijffels RH, Barbosa MJ, Eppink MHM (2010) Microalgae for the production of bulk chemicals and biofuels. Biofuels Bioprod Biorefin 4:287–295Google Scholar
  212. 212.
    Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25:207–210PubMedGoogle Scholar
  213. 213.
    Goihl JH (2014) Defatted microalgae as alternative feedstuff. J Anim Sci 86Google Scholar
  214. 214.
    Gilbert-López B, Mendiola JA, van den Broek LAM, Houweling-Tan B, Sijtsma L, Cifuentes A et al (2017) Green compressed fluid technologies for downstream processing of Scenedesmus obliquus in a biorefinery approach. Algal Res 24(Part A):111–121Google Scholar
  215. 215.
    Barba FJ, Grimi N, Vorobiev E (2015) New approaches for the use of non-conventional cell disruption technologies to extract potential food additives and nutraceuticals from microalgae. Food Eng Rev 7:45–62Google Scholar
  216. 216.
    Riggi E (2010) Recent patents on the extraction of carotenoids. Recent Pat Food Nutr Agric 2:75–82PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mariany C. Deprá
    • 1
  • Aline M. dos Santos
    • 1
  • Ihana A. Severo
    • 1
  • Andriéli B. Santos
    • 1
  • Leila Q. Zepka
    • 1
  • Eduardo Jacob-Lopes
    • 1
  1. 1.Department of Food Science and TechnologyFederal University of Santa MariaSanta MariaBrazil

Personalised recommendations