Advertisement

BioEnergy Research

, Volume 9, Issue 2, pp 384–398 | Cite as

Dedicated Energy Crops and Crop Residues for Bioenergy Feedstocks in the Central and Eastern USA

  • R. B. MitchellEmail author
  • M. R. Schmer
  • W. F. Anderson
  • V. Jin
  • K. S. Balkcom
  • J. Kiniry
  • A. Coffin
  • P. White
Article

Abstract

Dedicated energy crops and crop residues will meet herbaceous feedstock demands for the new bioeconomy in the Central and Eastern USA. Perennial warm-season grasses and corn stover are well-suited to the eastern half of the USA and provide opportunities for expanding agricultural operations in the region. A suite of warm-season grasses and associated management practices have been developed by researchers from the Agricultural Research Service of the US Department of Agriculture (USDA) and collaborators associated with USDA Regional Biomass Research Centers. Second generation biofuel feedstocks provide an opportunity to increase the production of transportation fuels from recently fixed plant carbon rather than from fossil fuels. Although there is no “one-size-fits-all” bioenergy feedstock, crop residues like corn (Zea mays L.) stover are the most readily available bioenergy feedstocks. However, on marginally productive cropland, perennial grasses provide a feedstock supply while enhancing ecosystem services. Twenty-five years of research has demonstrated that perennial grasses like switchgrass (Panicum virgatum L.) are profitable and environmentally sustainable on marginally productive cropland in the western Corn Belt and Southeastern USA.

Keywords

Big bluestem Bioenergy C4 grasses Corn stover Energycane Miscanthus Napier grass Sorghum Switchgrass 

References

  1. 1.
    Mitchell RB, Vogel KP, Sarath G (2008) Managing and enhancing switchgrass as a bioenergy feedstock. Biofuels Bioprod Biorefin 2:530–539Google Scholar
  2. 2.
    Mitchell R, Owens V, Gutterson N, Richard E, Barney J (2011) Herbaceous perennials: Placement, benefits and incorporation challenges in diversified landscapes. P. 84–98. In: Sustainable Alternative Fuel Feedstock Opportunities, Challenges and Roadmaps for Six U.S. Regions, R. Braun, D. Karlen, and D. Johnson (eds.). Soil & Water Cons. Soc., Ankeny, IAGoogle Scholar
  3. 3.
    Golden JS, Handfield RB, Daystar J, McConnell TE (2015) An economic impact analysis of the U.S. biobased products industry: A report to the congress of the United States of America. A joint publication of the Duke Center for Sustainability & Commerce and the Supply Chain Resource Cooperative at North Carolina State University Available at: http://www.biopreferred.gov/BPResources/files/EconomicReport_6_12_2015.pdf
  4. 4.
    US Department of Energy (2011) US Billion-Ton Update: biomass supply for a bioenergy and bioproducts industry. RD Perlack B Stokes (Leads), ORNL/TM-2011/224. Oak Ridge National Laboratory, Oak Ridge, p 227Google Scholar
  5. 5.
    Vogel KP, Schmer MR, Mitchell RB (2005) Plant adaptation regions: ecological and climatic classification of plant materials. Rangeland Ecol Manag 58:315–319Google Scholar
  6. 6.
    Coffin, A, Strickland T, Anderson W, Lamb M, Lowrance R, Smith C (2015) Potential for production of perennial biofuel feedstocks in conservation buffers on the Coastal Plain of Georgia, USA. BioEnergy Res: 1–14Google Scholar
  7. 7.
    Karlen DL, Birrell SJ, Johnson JMF, Osborne SL, Schumacher TE, Varvel GE, Ferguson RB, Novak JM, Fredrick JR, Baker JM, Lamb JA, Adler PR, Roth GW, Nafziger ED (2014) Multilocation corn stover harvest effects on crop yields and nutrient removal. Bioenergy Res 7:528–539. doi: 10.1007/s12155-013-9390-8 Google Scholar
  8. 8.
    Mitchell R, Vogel KP, Uden DR (2012) The feasibility of switchgrass for biofuel production. Biofuels 3:47–59Google Scholar
  9. 9.
    Moore KJ, Birrell SJ, Brown RC, Casler MD, Euken JE, Hanna HM, Hayes DJ, Hill JD, Jacobs KL, Kling CL, Laird D, Mitchell RB, Murphy PT, Raman DR, Schwab CV, Shinners KJ, Vogel KP, Volenec JJ (2015) Midwest vision for sustainable fuel production. Bioenergy. doi: 10.1080/17597269.2015.1015312 Google Scholar
  10. 10.
    Uden DR, Mitchell RB, Allen CR, Guan Q, McCoy TD (2013) The feasibility of producing adequate feedstock for year-round cellulosic ethanol production in an intensive agricultural fuelshed. BioEnergy Res 6:930–938Google Scholar
  11. 11.
    Follett RF, Vogel KP, Varvel GE, Mitchell RB, Kimble J (2012) Soil carbon sequestration by switchgrass and no-till maize grown for bioenergy. Bioenergy Res 5:866–875. doi: 10.1007/s12155-012-9198-y Google Scholar
  12. 12.
    Vogel KP, Mitchell RB, Casler M, Sarath G (2014) Registration of Liberty switchgrass. J Plant Regist 8:242–247. doi: 10.3198/jpr2013.12.0076crc Google Scholar
  13. 13.
    Schmer MR, Vogel KP, Varvel GE, Follett RF, Mitchell RB, Jin VL (2014) Energy potential and greenhouse gas emissions from bioenergy cropping systems on marginally productive cropland. PLoS ONE 9, e89501. doi: 10.1371/journal.pone.0089501 PubMedPubMedCentralGoogle Scholar
  14. 14.
    Porter PA, Mitchell RB, Moore KJ (2015) Reducing hypoxia in the Gulf of Mexico: reimagining a more resilient agricultural landscape in the Mississippi River Watershed. J Soil Water Conserv 70:63–68Google Scholar
  15. 15.
    Vogel KP (2004) Switchgrass. In: Moser LE, Burson BL, Sollenberger LE (eds) Warm-season (C4) Grasses. ASA-CSSA-SSSA, Madison, pp 561–588Google Scholar
  16. 16.
    Schmer MR, Vogel KP, Mitchell RB, Perrin RK (2008) Net energy of cellulosic ethanol from switchgrass. Proc Natl Acad Sci UDA 105:464–469Google Scholar
  17. 17.
    Mitchell R, Vogel KP, Berdahl JD, Masters RA (2010) Herbicides for establishing switchgrass in the Central and Northern Great Plains. BioEnergy Res 3:321–327Google Scholar
  18. 18.
    Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input highdiversity grassland biomass. Science 314:1598-1600PubMedGoogle Scholar
  19. 19.
    Fedenko JR, Erickson JE, Woodard KR, Sollenberger LE, Venramini JMB, Gilbert RA, Helsel ZR, Peter GF (2013) Biomass production and composition of perennial grasses grown for bioenergy in a subtropical climate across Florida, USA. Bioenergy Res 6:1082–1093Google Scholar
  20. 20.
    Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of miscanthus. Glob Chang Biol 14:2000–2014Google Scholar
  21. 21.
    Kiniry JR, Anderson LC, Johnson MV, Behrman KD, Brakie M, Burner DM, Cordsiemon RL, Fay PA, Fritschi FB, Houx JH III, Hawkes C, Juenger T, Kaiser J, Keitt T, Lloyd-Reilley J, Maher S, Raper R, Scott A, Shadow A, West C, Wu Y, Zibilske LM (2013) Perennial biomass grasses and the Mason-Dixon line: comparative productivity across latitudes in the southern Great Plains. BioEnergy Res 6:276–291Google Scholar
  22. 22.
    Casey A, Kaiser J, Cordsiemon R (2011) Fact sheet for planting and managing giant miscanthus in Missouri for the Biomass Crop Assistance Program (BCAP). USDA-Natural Resources Conservation Service, Plant Materials Center. Elsberry, MOGoogle Scholar
  23. 23.
    Shoemaker CE, Bransby DI (2011) The role of sorghum as a bioenergy feedstock In: R. Braun, D.L. Karlen, and D. Johnson (eds.) Sustainable Alternative Fuel Feedstock Opportunities, Challenges and Roadmaps for Six U.S. Regions. Proceedings of the Sustainable Feedstocks for Advanced Biofuel Workshop. Sept. 27–29, 2010. Atlanta, GA. Soil and Water Conservation Society, Ankeny, IA 50023 149–159Google Scholar
  24. 24.
    Eggleston G, Tew T, Panella L, Klasson T (2010) Ethanol from sugar crops. Industrial Crops and Uses, 60–83Google Scholar
  25. 25.
    Webster TM, Grey TL, Scully BT, Johnson III WC, Davis RF, Brenneman TB (2015) Yield potential of spring-harvested sugar beet (Beta vulgaris) depends on autumn planting timeGoogle Scholar
  26. 26.
    Chynoweth DP, Turick CE, Owens JM, Jerger DE, Peck MW (1993) Biochemical methane potential of biomass and waste feedstocks. Biomass Bioenergy 5:95–111Google Scholar
  27. 27.
    Leon RG, Gilbert RA, Comstock JC (2015) Energycane (Saccharum spp. × Saccharum spontaneum L.) biomass production, reproduction, and weed risk assessment scoring in the humid Tropics and Subtropics. Agron J 107:323–329Google Scholar
  28. 28.
    Glowacka K, Ahmed A, Sharma S, Abbott T, Comstock JC, Long SP, Sacks EJ (2015) Can chilling tolerance of C4 photosynthesis in Miscanthus be transferred to sugarcane? GCB Bioenergy. doi: 10.1111/gcbb.12283 Google Scholar
  29. 29.
    Knoll JE, Johnson JM, Huang P, Lee RD, Anderson WF (2015) Effects of delayed winter harvest on biomass yield and quality of napiergrass and energycane. Biomass Bioenergy 80:330–337. doi: 10.1016/j.biombioe.2015.06.018 Google Scholar
  30. 30.
    Bouton J (2002) In Bioenergy Crop Breeding and Production Research in the Southeast, ORNL/SUB-02-19XSV810C/01Google Scholar
  31. 31.
    Knoll JE, Anderson WF, Strickland TC, Hubbard RK, Malik R (2012) Low-input production of biomass from perennial grasses in the Coastal Plain of Georgia, USA. Bioenergy Res 5:206–214Google Scholar
  32. 32.
    Yerka MK, Watson A, Toy JJ, Erickson G, Pedersen JF, Mitchell RB (2015) Yield and forage value of a dual-purpose bmr-12 sorghum hybrid. Crop Sci 55:681–687. doi: 10.2135/cropsci2014.06.0437 Google Scholar
  33. 33.
    Dien BS, Sarath G, Pedersen JF, Sattler SE, Chen H, Funnell-Harris DL, Nichols NN, Cotta MA (2009) Improved sugar conversion and ethanol yield for forage sorghum (Sorghum bicolor L. Moench) lines with reduced lignin contents. Bioenergy Res 2:153–164Google Scholar
  34. 34.
    Tamang PL, Bronson KF, Malapati A, Schwartz R, Johnson J, Moore-Kucera J (2011) Nitrogen requirements for ethanol production from sweet and photoperiod sensitive sorghums in the Southern High Plains. Agron J 103:431–440. doi: 10.2134/agronj2010.0288 Google Scholar
  35. 35.
    Haankuku C, Epplin FM, Kakani VG (2014) Forage sorghum response to nitrogen fertilization and estimation of production cost. Agron J 106:1659–1666. doi: 10.2134/agronj14.0078 Google Scholar
  36. 36.
    Rocateli AC, Raper RL, Balkcom KS, Arriaga FJ, Bransby DI (2012) Biomass sorghum production and compoents under different irrigation/tillage systems for the southeastern U.S. Ind Crops Prod 36:589–598Google Scholar
  37. 37.
    Hagan AK, Bowen KL, Pegues M, Jones J (2014) Nitrogen rate and variety impact diseases and yield of sorghum for biofuel. Agron J 106:1205–1211. doi: 10.2134/agronj13.0483 Google Scholar
  38. 38.
    Han KJ, Alison MW, Pitman WD, Day DF, Kim M, Madsen L (2012) Planting date and harvest maturity impact on biofuel feedstock productivity and quality of sweet sorghum grown under temperate Louisiana conditions. Agron J 104:1618–1624. doi: 10.2134/agronj2012.0213 Google Scholar
  39. 39.
    Sarath G, Mitchell RB, Sattler SE, Funnell D, Pedersen JF, Graybosch RA (2008) Opportunities and roadblocks in utilizing forages and small grains for liquid fuels. J Ind Microbiol Biotechnol 35:343–354PubMedGoogle Scholar
  40. 40.
    Perrin RK, Vogel KP, Schmer MR, Mitchell RB (2008) Farm-scale production cost of switchgrass for biomass. Bioenergy Res 1:91–97Google Scholar
  41. 41.
    Masters RA, Mitchell R (2007) Weed management. In: Forages: The science of grassland agriculture, 6th Edition, Chap 26: 395–409Google Scholar
  42. 42.
    Mitchell RB, Vogel KP, Schmer MR (2013) Switchgrass (Panicum virgatum) for biofuel production. Sustainable Ag Energy Community of Practice, eXtension. (http://extension.org/pages/Switchgrass_for_Biofuel_Production)
  43. 43.
    Mitchell RB, Vogel KP (2012) Germination and emergence tests for predicting switchgrass field establishment. Agron J 104:458–465Google Scholar
  44. 44.
    Heaton EA, Boersma N, Caveny J, Voigt T, Dohleman F (2014) Miscanthus (Miscanthus x giganteus) for biofuel production. Sustainable Ag Energy Community of Practice, eXtension. (http://www.extension.org/pages/26625/miscanthus-miscanthus-x-giganteus-for-biofuel-production#.VgVA-9JVhBc)
  45. 45.
    Schmer MR, Liebig MA, Vogel KP, Mitchell RB (2011) Field-scale soil property changes under switchgrass managed for bioenergy. Global Chang Biol-Bioenergy 3:439–448Google Scholar
  46. 46.
    Knoll JE, Anderson WF (2012) Vegetative propagation of napiergrass and energycane for biomass production in the Southeast United States. Agron J 104:518–522Google Scholar
  47. 47.
    Cutts GS III, Webster TM, Grey TL, Vencill WK, Lee RD, Tubbs RS, Anderson WF (2011) Herbicide effect on napiergrass (Pennisetum purpureum Schum.) control. Weed Sci 59:255–262Google Scholar
  48. 48.
    Mitchell RB, Vogel KP (2015) Grass invasion into switchgrass managed for biomass energy. Bioenergy Res. doi: 10.1007/s12155-015-9656-4 Google Scholar
  49. 49.
    Hong C, Owens VN, Bransby D, Farris R, Fike J, Heaton E, Kim S, Mayton H, Mitchell R, Viands D (2014) Switchgrass response to nitrogen fertilizer across diverse environments in the USA: a regional feedstock partnership report. Bioenergy Res 7:777–788Google Scholar
  50. 50.
    Wayman S, Bowden RD, Mitchell RB (2014) Seasonal changes in shoot and root nitrogen distribution in switchgrass (Panicum virgatum). Bioenergy Res 7:243–252Google Scholar
  51. 51.
    Vogel KP, Brejda JJ, Walters DT, Buxton DR (2002) Switchgrass biomass production in the Midwest USA: harvest and nitrogen management. Agron J 94:413–420Google Scholar
  52. 52.
    Heaton EA, Dohleman FG, Long SP (2009) Seasonal nitrogen dynamics of Miscanthus x giganteus and Panicum virgatum. GCB Bioenergy 1:297–307Google Scholar
  53. 53.
    Knoll JE, Anderson WF, Malik R, Hubbard RK, Strickland TM (2013) Production of napiergrass as a bioenergy feedstock under organic versus inorganic fertilization in the Southeast USA. BioEnergy Res 6:974–983Google Scholar
  54. 54.
    Mitchell RB, Schmer MR (2012) Switchgrass harvest and storage. In: Monti A (ed) Switchgrass, Green Energy and Technology. Springer, London, pp 113–127Google Scholar
  55. 55.
    Vogel KP, Sarath G, Saathoff A, Mitchell R (2011) Switchgrass. In: Halford N, Karp A (eds) Energy Crops. The Royal Society of Chemistry, CambridgeGoogle Scholar
  56. 56.
    Wullschleger SD, Davis EB, Borsuk ME, Gunderson CA, Lynd LR (2010) Biomass production in switchgrass across the United States: database description and determinants of yield. Crop Sci 102:1158–1168Google Scholar
  57. 57.
    Adler PR, Sanderson MA, Boateng AA, Weimer PJ, Jung H-JG (2006) Biomass yield and biofuel quality of switchgrass harvested in fall or spring. Agron J 98:1518–1525Google Scholar
  58. 58.
    Knoll JE, Anderson WF, Richard EP, Doran-Peterson J, Baldwin B, Hale AL, Viator RP (2013) Harvest date effects on biomass quality and ethanol yield of new energycane (Saccharum hyb.) genotypes in the Southeast USA. Biomass Bioenergy 56:147–156Google Scholar
  59. 59.
    Cannayen I, Archer DW, Gustafson C, Schmer MR, Hendrickson JR, Kronberg SL, Keshwani D, Backer L, Hellevang K, Faller T (2014) Biomass round bales infield aggregation logistic scenarios. Biomass Bioenergy 66:12–26Google Scholar
  60. 60.
    Manlu Y, Cannayen I, Hendrickson J, Sanderson M, Liebig M (2014) Mechanical shear and tensile properties of selected biomass stems. Trans ASABE 57(4):1231–1242 (doi: 10.13031/trans.57.10131)Google Scholar
  61. 61.
    Vogel KP, Jung HG (2001) Genetic modification of herbaceous plants for feed and fuel. Crit Rev Plant Sci 20:15–49Google Scholar
  62. 62.
    Vogel KP, Dien B, Jung H, Casler M, Masterson S, Mitchell R (2011) Quantifying actual and theoretical biomass ethanol yields for switchgrass strains using NIRS analyses. Bioenergy Res 4:96–110Google Scholar
  63. 63.
    Sarath G, Vogel KP, Dien B, Saathoff A, Mitchell R, Chen H (2011) Ethanol yields and cell wall properties in divergently bred switchgrass genotypes. Bioresour Technol 102:9579–9585PubMedGoogle Scholar
  64. 64.
    Jin VL, Schmer MR, Wienhold BJ, Stewart CE, Varvel GE, Sindelar AJ, Follett RF, Mitchell RB, Vogel KP (2015) Twelve years of stover removal increases soil erosion potential without impacting yield. Soil Sci Soc Am J 79:1169–1178Google Scholar
  65. 65.
    Adler PR, Rau BM, Roth GW (2015) Sustainability of corn stover harvest strategies in Pennsylvania. Bionergy Res. doi: 10.1007/s12155-015-9593-2 Google Scholar
  66. 66.
    Halvorson AD, Stewart CE (2015) Stover removal affects no-till irrigated corn yields, soil carbon, and nitrogen. Agron J 107:1504–1512Google Scholar
  67. 67.
    Schmer MR, Varvel GE, Follett RF, Jin VL, Wienhold BJ (2014) Tillage and residue management effects on soil carbon and nitrogen under irrigated continuous corn. Soil Sci Soc Am J 78:1987–1996Google Scholar
  68. 68.
    Johnson JM, Wilhelm WW, Karlen DL, Archer DW, Wienhold BJ, Lightle DT, Laird DA, Baker JM, Ochsner TE, Novak JM, Halvorson AD, Arriaga FJ, Barbour NW (2010) Nutrient removal as a function of corn stover cutting height and cob harvest. BioEnergy Res 3:342–352Google Scholar
  69. 69.
    Mourtzinis S, Arriaga F, Balkcom KS, Price AJ (2015) Vertical distribution of corn biomass as influenced by cover crop and stover harvest. Agron J 107:232–240. doi: 10.2134/agronj14.0166 Google Scholar
  70. 70.
    Karlen DL, Birrell SJ, Hess J (2011) A five-year assessment of corn stover harvest in central Iowa, USA. Soil Tillage Res 115–116:47–55Google Scholar
  71. 71.
    Cantrell KB, Novak JM, Frederick JR, Karlen DL, Watts DW (2014) Influence of corn residue harvest management on grain, stover, and energy yields. BioEnergy Res 7(2):590–597Google Scholar
  72. 72.
    Mourtzinis S, Cantrell KB, Arriaga FG, Balkcom KS, Novak JM, Frederick JR, Karlen DL (2014) Distribution of structual carbohydrates in corn plants across the southeastern USA. Bioenergy Res 7:551–558Google Scholar
  73. 73.
    Karlen DL, Birrell SJ, Wirt AR, Schock N (2013) Corn stover harvest strategy effects on grain yield and soil quality indicators. Agrociencia 17(2):121–140Google Scholar
  74. 74.
    Sindelar AJ, Coulter JA, Lamb JA, Vetsch JA (2013) Agronomic responses of continuous corn to stover, tillage, and nitrogen management. Agron J 105:1498–1506Google Scholar
  75. 75.
    Wilhelm WW, Hess J, Karlen D, Johnson JMF, Muth D, Baker J, Gollany H, Novak J, Stott D, Varvel G (2010) Review: balancing limiting factors and economic drivers for sustainable Midwestern US agricultural residue feedstock supplies. Ind Biotechnol 6:271–287Google Scholar
  76. 76.
    Wilhelm WW, Johnson JMF, Karlen DL, Lightle DT (2007) Corn stover to sustain soil organic carbon further constrains biomass supply. Agron J 99:1665–1667Google Scholar
  77. 77.
    Blanco-Canqui H, Ferguson RB, Jin VL, Schmer MR, Wienhold BJ, Tatarko J (2014) Can cover crop and manure maintain soil properties after stover removal from irrigated no-till corn? Soil Sci Soc Am J 78:1368–1377. doi: 10.2136/sssaj2013.12.0550 Google Scholar
  78. 78.
    Schmer MR, Jin VL, Wienhold BJ (2015) Sub-surface soil carbon changes affects biofuel greenhouse gas emissions. Biomass Bioenergy 81:31–35Google Scholar
  79. 79.
    Johnson JMF, Novak JM, Varvel GE, Stott DE, Osborne SL, Karlen DL, Lamb JA, Baker J, Adler PA (2014) Crop residue mass needed to maintain soil organic carbon levels: can it be determined? BioEnergy Res 7:481–490. doi: 10.1007/s12155-013-9402-8 Google Scholar
  80. 80.
    Osborne SL, Johnson JMF, Jin VL, Hammerbeck AL, Varvel GE, Schumacher TE (2014) The impact of corn residue removal on soil aggregates and particulate organic matter. BioEnergy Res 7:559–567. doi: 10.1007/s12155-014-9413-0 Google Scholar
  81. 81.
    Cavigelli MA, Parkin TB (2012) Cropland management contributions to greenhouse gas flux: central and eastern U.S. In: Liebig MA, Franzluebbers AJ, Follett RF (eds) Managing Agricultural Greenhouse Gases: Coordinated Agricultural Research through GRACEnet to Address our Changing Climate. Academic, New York, pp 129–165Google Scholar
  82. 82.
    USEPA (2011) Inventory of U.S. greenhouse gas emissions and sinks: 1990–2009Google Scholar
  83. 83.
    Energy Independence and Security Act (Final Rule) 75 Federal Register 14669 (March 26, 2010), pp. 14669–14904Google Scholar
  84. 84.
    Adler PR, Del Grosso SJ, Inman D, Jenkins RE, Spatari S, Zhang Y (2012) Mitigation opportunities for life cycle greenhouse gas emissions during feedstock production across heterogeneous landscapes. In: Liebig MA, Franzluebbers AJ, Follett RF (eds) Managing Agricultural Greenhouse Gases: Coordinated Agricultural Research through GRACEnet to Address our Changing Climate. Academic, New York, pp 203–219Google Scholar
  85. 85.
    IPCC (2006) Guidelines for national greenhouse gas inventories, volume 4, Agriculture, forestry and other land use, Intergovernmental Panel on Climate ChangeGoogle Scholar
  86. 86.
    Jin VL, Baker JM, Johnson JM, Karlen DL, Lehman RM, Osborne SL, Sauer TJ, Stott DE, Varvel GE, Venterea RT, Schmer MR, Wienhold BJ (2014) Soil greenhouse gas emissions in response to corn stover removal and tillage management across the US corn belt. BioEnergy Res 7(2):517–527Google Scholar
  87. 87.
    Ogle SM, McCarl B, Baker J, Del Grosso S, Adler P, Paustian K, Parton W (2015) Managing the nitrogen cycle to reduce greenhouse gas emissions from crop porudction and biofuel expansion. Mitig Adapt Strat Glob Chang. doi: 10.1007/s11027-015-9645-0 Google Scholar
  88. 88.
    Skinner RH, Adler PR (2010) Carbon dioxide and water fluxes from switchgrass managed for bioenergy production. Agric Ecosyst Environ 138:257–264Google Scholar
  89. 89.
    Liebig MA, Schmer MR, Vogel KP, Mitchell RB (2008) Soil carbon storage by switchgrass grown for bioenergy. BioEnergy Res 1:215–222Google Scholar
  90. 90.
    Schmer MR, Vogel KP, Varvel GE, Follett RF, Mitchell RB, Jin VL (2014) Energy potential and greenhouse gas emissions from bioenergy cropping systems on marginally productive cropland. PLoS ONE 9(3), e89501. doi: 10.1371/journal.pone.0089501 PubMedPubMedCentralGoogle Scholar
  91. 91.
    Garten CT, Wullschleger SD (2000) Soil carbon dynamics beneath switchgrass as indicated by stable isotope analysis. J Environ Qual 29:645–653Google Scholar
  92. 92.
    McLaughlin SB, De La Torre Ugarte DG et al (2002) High-value renewable energy from prairie grasses. Environ Sci Technol 36:2122–2129PubMedGoogle Scholar
  93. 93.
    Schmer MR, Liebig MA, Hendrickson JR, Tanaka DL, Phillips RL (2012) Growing season greenhouse gas flux from switchgrass in the northern Great Plains. Biomass Bioenergy 45:315–319Google Scholar
  94. 94.
    Mbonimpa EG, Hong CO, Owens VN, Lehman RM, Osborne SL, Schumacher TE, Clay DE, Kumar S (2015) Nitrogen fertilizer and landscape position impacts on CO2 and CH4 fluxes from a landscape seeded to switchgrass. Glob Chang Biol-Bioenergy 7:836–849Google Scholar
  95. 95.
    Campbell EE, Johnson JMF, Jin FL, Lehman RM, Osborne SL, Varvel GE, Paustian K (2014) Assessing the soil carbon, biomass production, and nitrous oxide emission impact of corn stover management for bioenergy feedstock production using DAYCENT. BioEnergy Res 7:491–502Google Scholar
  96. 96.
    Wienhold BJ, Schmer MR, Jin VL, Varvel GE, Gollany H (2015) CQESTR simulated changes in soil organic carbon under residue management practices in continuous corn systems. BioEnergy Res. doi: 10.1007/s12155-015-9654-6 Google Scholar
  97. 97.
    Lehman RM, Cambardella CA, Stott DE, Acosta-Martínez V, Manter DK, Buyer JS, Maul JE, Smith JL, Collins HP, Halvorson JJ, Kremer RJ, Lundgren JG, Ducey TF, Jin VL, Karlen DL (2015) Understanding and enhancing soil biological health: the solution for reversing soil degradation. Sustain 7:988–1027Google Scholar
  98. 98.
    Johnson JMF, Novak JM (2012) Sustainable bioenergy feedstock production systems: integrating carbon dynamics, erosion, water quality, and greenhouse gas production. In: Liebig MA, Franzluebbers AJ, Follett RF (eds) Managing Agricultural Greenhouse Gases: Coordinated Agricultural Research through GRACEnet to Address our Changing Climate. Academic, New York, pp 111–126Google Scholar
  99. 99.
    Stewart CE, Follett RF, Pruessner EG, Varvel GE, Vogel KP, Mitchell RB (2015) Nitrogen and harvest effects on soil properties under rainfed switchgrass and no-till corn over 9 years: implications for soil quality. GCB Bioenergy 7:288–301Google Scholar
  100. 100.
    Fay PA, Polley HW, Jin VL, Aspinwall MJ (2012) Productivity of well-watered Panicum virgatum does not increase with CO2 enrichment. J Plant Ecol 5(4):366–375Google Scholar
  101. 101.
    Uden DR, Allen CR, Mitchell RB, Guan Q, McCoy TD (2013) Bioenergy feedstock development scenarios & potential impacts on regional groundwater withdrawals. J Soil Water Conserv 68:124–128Google Scholar
  102. 102.
    Lehman RM, Ducey TF, Jin VL, Acosta-Martínez V, Ahlschwede CM, Jeske ES, Drijber RA, Cantrell KB, Frederick JR, Fink DM, Osborne SL, Novak JM, Johnson JMF, Varvel GE (2014) Soil microbial community response to corn stover harvesting under rain-fed, no-till conditions at multiple US locations. BioEnergy Res 7:540–550Google Scholar
  103. 103.
    Kiniry JR, Williams JR, Gassman PB, Debaeke P (1992) A general process oriented model for two competing plant species. Trans ASABE 35:801–810Google Scholar
  104. 104.
    Meki MN, Snider JL, Kiniry JR, Raper RL, Rocateli AC (2013) Energy sorghum biomass harvest thresholds and tillage effects on soil organic carbon and bulk density. Ind Crops Prod 43:172–182Google Scholar
  105. 105.
    Kelly CN, Calderon FC, Acosta-Martinez V, Mikha M, Benjamin J, Rutherford DW, Rostad CE (2015) Switchgrass biochar effects on plant biomass and microbial dynamics in two soils from different regions. Pedosphere 25:329–342Google Scholar
  106. 106.
    Novak JM, Cantrell KB, Watts DW, Busscher WJ, Johnson MG (2014) Designing relevant biochars as soil amendments using lignocellulosic-based and manure-based feedstocks. J Soils Sediments 14:330–343Google Scholar
  107. 107.
    Spokas KA, Cantrell KB, Novak JM, Archer DW, Ippolito JA, Collins HP, Boateng AA, Lima IM, Lamb MC, McAloon AJ, Lentz RD, Nichols KA (2012) Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J Environ Qual 41:973–989PubMedPubMedCentralGoogle Scholar
  108. 108.
    Pourhashem G, Adler PR, McAloon AJ, Spatari S (2013) Cost and greenhouse gas emission tradeoffs of alternative uses of lignin for second generation ethanol. Environ Res Lett 8:025021Google Scholar
  109. 109.
    Del Grosso SJ, White JW, Wilson G, Vandenberg B, Karlen DL, Follett RF, Johnson JMF, Franzluebbers AJ, Archer DW, Gollany HT, Liebig MA, Ascough J, Reyes-Fox M, Pellack L, Star J, Barbour N, Polumsky RW, Gutwein M, James D (2013) Introducing the GRACEnet/REAP data contribution, discovery, and retrieval systems. J Environ Qual 42:1274–1280PubMedGoogle Scholar
  110. 110.
    Hawaii Clean Energy Initiative (HCEI) (2015) http://www.hawaiicleanenergyinitiative.org/
  111. 111.
    Meki MN, Kiniry JR, Youkhana AH, Crow SE, Ogoshi RM, Nakahata MH, Tirado-Corbalá R, Anderson RG, Osorio J, Jeong J (2015) Two-year growth cycle sugarcane crop parameter attributes and their application in modeling. Agron J 107:1310–1320Google Scholar
  112. 112.
    Osorio J, Jeong J, Bieger K, Arnold J (2014) Influence of potential evapotranspiration on water balance of sugarcane yields in Maui, Hawaii. J Water Resour Prot 6:852–868Google Scholar
  113. 113.
    Kiniry JR, Meki MN, Schumacher TE, Zilverberg CJ, Fritschi FB, Kakani VG (2014) Modeling to evaluate and manage water and environmental sustainability of bioenergy crops in the United States. pp. 139–160 in Practical Applications of Agricultural System Models to Optimize the Use of Limited Water. Advances in Agricultural Systems Models 5. American Soc. of AgronGoogle Scholar
  114. 114.
    Kiniry JR, Schmer MR, Vogel KP, Mitchell RB (2008) Switchgrass biomass simulation at diverse sites in the northern Great Plains of the US. BioEnergy Res 1:259–264Google Scholar
  115. 115.
    Aspinwall MJ, Lowry DB, Taylor SH, Juenger TE, Hawkes CV, Johnson MV, Kiniry JR, Fay PA (2013) Genotypic variation in traits linked to climate and aboveground productivity in a widespread C4 grass: evidence for a functional trait syndrome. New Phytol 199:966–980PubMedGoogle Scholar
  116. 116.
    Behrman KD, Kiniry JR, Winchell M, Juenger TE, Keitt TH (2013) Spatial forecasting of switchgrass productivity under current and future climate change scenarios. Ecol Appl 23(1):73–85PubMedGoogle Scholar
  117. 117.
    Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Sci 327:812–818. doi: 10.1126/science.1185383 Google Scholar
  118. 118.
    Storlien JO, Hons FM, Wight JP, Heilman JL (2014) Carbon dioxide and nitrous oxide emissions impacted by bioenergy sorghum management. Soil Sci Soc Am J 78:1694–1706. doi: 10.2136/sssaj2014.04.0176 Google Scholar
  119. 119.
    Balkcom KS, Shaw JN, Reeves DW, Burmester CH, Curtis LM (2007) Irrigated cotton response to tillage systems in the Tennessee Valley. J Cotton Sci 11:2–11Google Scholar
  120. 120.
    Ducamp F, Arriaga FJ, Balkcom KS, Prior SA, van Santen E, Mitchell CC (2012) Cover crop biomass harvest influences cotton nitrogen utilization and productivity. Int J Agron 2012:12. doi: 10.1155/2012/420624 Google Scholar
  121. 121.
    Anex RP, Lynd LR, Laser MS, Heggenstaller AH, Liebman M (2007) Potential for enhanced nutrient cycling through coupling of agricultural and bioenergy systems. Crop Sci 47:1327–1335. doi: 10.2135/cropsci2006.06.0406 Google Scholar
  122. 122.
    Olson DM, Webster TM, Scully BT, Strickland TC, Davis RF, Knoll JE, Anderson WF (2012) Use of winter legumes as banker plants for beneficial insect species in a sorghum cotton rotation system. J Entomol Sci 47:350–359Google Scholar
  123. 123.
    Wilhelm W, Johnson J, Lightle D, Karlen D, Novak J, Barbour N, Laird D, Baker J, Ochsner T, Halvorson A, Archer D, Arriaga F (2011) Vertical distribution of corn stover dry mass grown at several US locations. Bioenergy Res 4:11–21. doi: 10.1007/s12155-010-9097-z Google Scholar
  124. 124.
    Balkcom KS, Reeves DW (2005) Sunn hemp utilized as a legume cover crop for corn production. Agron J 97:26–31Google Scholar
  125. 125.
    Cantrell KB, Bauer PJ, Ro KS (2010) Utilization of summer legumes as bioenergy feedstocks. Biomass Bioenergy 34:1961–1967. doi: 10.1016/j.biombioe.2010.08.005 Google Scholar
  126. 126.
    Feyereisen GW, Camargo GGT, Baxter RE, Baker JM, Richard TL (2013) Cellulosic biofuel potential of a winter rye double crop across the U.S. corn-soybean beltGoogle Scholar
  127. 127.
    Sindelar AJ, Schmer MR, Gesch RW, Forcella F, Eberle CA, Thom MD, Archer DW (2015) Winter oilseed production for biofuel in the U.S. Corn Belt: Opportunities and limitations. GCB Bioenergy. doi: 10.1111/gcbb.12297 Google Scholar
  128. 128.
    Lemus R, Lal R (2005) Bioenergy crops and carbon sequestration. Crit Rev Plant Sci 24:1–21Google Scholar
  129. 129.
    Barney J, DiTomaso J (2008) Non-native species and bioenergy: are we cultivating the next invader? Bioscience 58:64–70. doi: 10.1641/B58011 Google Scholar

Copyright information

© The Author(s) 2016

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • R. B. Mitchell
    • 1
    Email author
  • M. R. Schmer
    • 2
  • W. F. Anderson
    • 3
  • V. Jin
    • 2
  • K. S. Balkcom
    • 4
  • J. Kiniry
    • 5
  • A. Coffin
    • 6
  • P. White
    • 7
  1. 1.USDA/ARS Grain, Forage and Bioenergy Research UnitLincolnUSA
  2. 2.USDA/ARS Agroecosystem Management Research UnitLincolnUSA
  3. 3.USDA/ARS Crop Genetics and Breeding Research UnitTiftonUSA
  4. 4.USDA/ARS National Soil Dynamics LaboratoryAuburnUSA
  5. 5.USDA/ARS Grassland Soil and Water Research LaboratoryTempleUSA
  6. 6.USDA/ARS Southeast Watershed Research UnitTiftonUSA
  7. 7.USDA/ARS Sugarcane Research UnitHoumaUSA

Personalised recommendations