BioEnergy Research

, Volume 9, Issue 2, pp 656–670 | Cite as

Drainage and Nitrate Leaching Assessed During 7 Years Under Perennial and Annual Bioenergy Crops

  • Fabien FerchaudEmail author
  • Bruno Mary


Sustainable bioenergy crops must contribute not only to the production of renewable energy but also to maintaining or restoring water resource and quality. The aim of this study was to quantify water drainage and nitrate leaching under perennial (Miscanthus × giganteus and switchgrass), “semi-perennial” (fescue and alfalfa) and annual (sorghum and triticale) bioenergy crops managed with two N fertilisation rates. Soil water and mineral N contents were measured twice a year during 7 consecutive years. These measurements were used to initialize the STICS model which simulated in turn the amounts of drained water and nitrate leached below 210 cm. Semi-perennial crops produced less drainage than annual crops (64 vs. 133 mm year−1) despite a similar biomass production. Perennial crops resulted in an intermediate drainage (90 mm year−1) but a greater biomass production. The drainage was negatively correlated with biomass production for perennial and annual crops. Perennial crops exhibited much higher water use efficiency than the other species. Nitrate concentration in drained water was low for all crops, most often less than 20 mg NO3 l−1. It was lower for perennials than other crops, except for miscanthus on the first year of measurement. However, the comparison of model outputs with nitrate concentrations measured in subsoil after 5 years indicated that the peak of nitrate produced after miscanthus establishment was subsequently recovered by the crop in deep layers (below 210 cm). Perennial bioenergy crops have potential for restoring water quality but may decrease groundwater recharge in deep soils or dry climates.


Bioenergy Energy crops Nitrate losses Drainage Water balance Miscanthus Switchgrass 



We are grateful to Emilie Mignot, Frédéric Mahu, Nicolas Collanges, Charlotte Demay, Guillaume Vitte and Eric Venet who participated in soil sampling during the 7 years. We also thank the staff of the INRA AgroImpact and GCIE Picardie units involved in the maintenance of the B&E experiment. This work was supported by the French National Agency (ANR) as part of the Regix project and by BPI-France as part of the Futurol project.

Supplementary material

12155_2015_9710_MOESM1_ESM.docx (245 kb)
Online Resource 1 (DOCX 245 kb)
12155_2015_9710_MOESM2_ESM.docx (17 kb)
Online Resource 2 (DOCX 16 kb)
12155_2015_9710_MOESM3_ESM.docx (16 kb)
Online Resource 3 (DOCX 16 kb)
12155_2015_9710_MOESM4_ESM.docx (35 kb)
Online Resource 4 (DOCX 34 kb)


  1. 1.
    Sutton MA, Oenema O, Erisman JW, Leip A, van Grinsven H, Winiwarter W (2011) Too much of a good thing. Nature 472(7342):159–161. doi: 10.1038/472159a CrossRefGoogle Scholar
  2. 2.
    Grizzetti B, Bouraoui F, Billen G, Van Grinsven H, Cardoso AC, Thieu V, Garnier J, Curtis C, Howarth R, Johnes P (2011) Nitrogen as a threat to European water quality. In: Howard C, Erisman JW, Sutton M et al (eds) The European nitrogen assessment. Cambridge University Press, Cambridge, pp 379–404CrossRefGoogle Scholar
  3. 3.
    Butterbach-Bahl K, Nemitz E, Zaehle S, Billen G, Boeckx P, Erisman JW, Garnier J, Upstill-Goddard R, Kreuzer M, Oenema O, Reis S, Schaap M, Simpson D, de Vries W, Winiwarter W, Sutton M (2011) Nitrogen as a threat to the European greenhouse balance. In: Howard C, Erisman JW, Sutton M et al (eds) The European nitrogen assessment. Cambridge University Press, Cambridge, pp 434–462CrossRefGoogle Scholar
  4. 4.
    Ducharne A, Baubion C, Beaudoin N, Benoit M, Billen G, Brisson N, Garnier J, Kieken H, Lebonvallet S, Ledoux E, Mary B, Mignolet C, Poux X, Sauboua E, Schott C, Thery S, Viennot P (2007) Long term prospective of the Seine River system: confronting climatic and direct anthropogenic changes. Sci Total Environ 375(1-3):292–311. doi: 10.1016/j.scitotenv.2006.12.011 CrossRefGoogle Scholar
  5. 5.
    Thieu V, Billen G, Garnier J, Benoit M (2011) Nitrogen cycling in a hypothetical scenario of generalised organic agriculture in the Seine, Somme and Scheldt watersheds. Reg Environ Chang 11(2):359–370. doi: 10.1007/s10113-010-0142-4 CrossRefGoogle Scholar
  6. 6.
    IPCC (2011) Summary for policymakers. In: Edenhofer O, Pichs-Madruga R, Sokona Y et al (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge, pp 1–24Google Scholar
  7. 7.
    Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889–892. doi: 10.1126/science.1136674 CrossRefGoogle Scholar
  8. 8.
    Smith KA, Searchinger TD (2012) Crop-based biofuels and associated environmental concerns. Glob Chang Biol Bioenergy 4(5):479–484. doi: 10.1111/j.1757-1707.2012.01182.x CrossRefGoogle Scholar
  9. 9.
    Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8(2):389–395CrossRefGoogle Scholar
  10. 10.
    Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329(5993):790–792. doi: 10.1126/science.1189268 CrossRefGoogle Scholar
  11. 11.
    Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489. doi: 10.1126/science.1114736 CrossRefGoogle Scholar
  12. 12.
    Don A, Osborne B, Hastings A, Skiba U, Carter MS, Drewer J, Flessa H, Freibauer A, Hyvonen N, Jones MB, Lanigan GJ, Mander U, Monti A, Djomo SN, Valentine J, Walter K, Zegada-Lizarazu W, Zenone T (2011) Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon. Glob Chang Biol Bioenergy 4(4):372–391. doi: 10.1111/j.1757-1707.2011.01116.x CrossRefGoogle Scholar
  13. 13.
    Gabrielle B, Bamière L, Caldes N, De Cara S, Decocq G, Ferchaud F, Loyce C, Pelzer E, Perez Y, Wohlfahrt J, Richard G (2014) Paving the way for sustainable bioenergy in Europe: technological options and research avenues for large-scale biomass feedstock supply. Renew Sust Energ Rev 33:11–25. doi: 10.1016/j.rser.2014.01.050 CrossRefGoogle Scholar
  14. 14.
    Cadoux S, Ferchaud F, Demay C, Boizard H, Machet JM, Fourdinier E, Preudhomme M, Chabbert B, Gosse G, Mary B (2014) Implications of productivity and nutrient requirements on greenhouse gas balance of annual and perennial bioenergy crops. Glob Chang Biol Bioenergy 6(4):425–438. doi: 10.1111/gcbb.12065 CrossRefGoogle Scholar
  15. 15.
    McIsaac GF, David MB, Mitchell CA (2010) Miscanthus and switchgrass production in Central Illinois: impacts on hydrology and inorganic nitrogen leaching. J Environ Qual 39(5):1790–1799. doi: 10.2134/jeq2009.0497 CrossRefGoogle Scholar
  16. 16.
    Lesur C, Bazot M, Bio-Beri F, Mary B, Jeuffroy MH, Loyce C (2014) Assessing nitrate leaching during the three-first years of Miscanthus x giganteus from on-farm measurements and modeling. Glob Chang Biol Bioenergy 6(4):439–449. doi: 10.1111/gcbb.12066 CrossRefGoogle Scholar
  17. 17.
    Pugesgaard S, Schelde K, Larsen SU, Lærke PE, Jørgensen U (2015) Comparing annual and perennial crops for bioenergy production—influence on nitrate leaching and energy balance. Glob Chang Biol Bioenergy 7(5):1136–1149. doi: 10.1111/gcbb.12215 CrossRefGoogle Scholar
  18. 18.
    Ng TL, Eheart JW, Cai XM, Miguez F (2010) Modeling miscanthus in the soil and water assessment tool (SWAT) to simulate its water quality effects as a bioenergy crop. Environ Sci Technol 44(18):7138–7144. doi: 10.1021/es9039677 CrossRefGoogle Scholar
  19. 19.
    Vanloocke A, Bernacchi CJ, Twine TE (2010) The impacts of Miscanthus x giganteus production on the Midwest US hydrologic cycle. Glob Chang Biol Bioenergy 2(4):180–191. doi: 10.1111/j.1757-1707.2010.01053.x Google Scholar
  20. 20.
    Smith CM, David MB, Mitchell CA, Masters MD, Anderson-Teixeira KJ, Bernacchi CJ, DeLucia EH (2013) Reduced nitrogen losses after conversion of row crop agriculture to perennial biofuel crops. J Environ Qual 42(1):219–228. doi: 10.2134/jeq2012.0210 CrossRefGoogle Scholar
  21. 21.
    Christian DG, Riche AB (1998) Nitrate leaching losses under miscanthus grass planted on a silty clay loam soil. Soil Use Manag 14(3):131–135CrossRefGoogle Scholar
  22. 22.
    Davis MP, David MB, Voigt TB, Mitchell CA (2014) Effect of nitrogen addition on Miscanthus × giganteus yield, nitrogen losses, and soil organic matter across five sites. Glob Chang Biol Bioenergy. doi: 10.1111/gcbb.12217 CrossRefGoogle Scholar
  23. 23.
    Ferchaud F, Vitte G, Bornet F, Strullu L, Mary B (2015) Soil water uptake and root distribution of different perennial and annual bioenergy crops. Plant Soil 388(1-2):307–322. doi: 10.1007/s11104-014-2335-y CrossRefGoogle Scholar
  24. 24.
    IUSS Working Group WRB (2006) World reference base for soil resources 2006. World Soil Resources Reports. FAO, RomeGoogle Scholar
  25. 25.
    Brisson N, Gary C, Justes E, Roche R, Mary B, Ripoche D, Zimmer D, Sierra J, Bertuzzi P, Burger P, Bussiere F, Cabidoche YM, Cellier P, Debaeke P, Gaudillere JP, Henault C, Maraux F, Seguin B, Sinoquet H (2003) An overview of the crop model STICS. Eur J Agron 18(3-4):309–332. doi: 10.1016/S1161-0301(02)00110-7 CrossRefGoogle Scholar
  26. 26.
    Brisson N, Launay M, Mary B, Beaudoin N (2008) Conceptual basis, formalisations and parameterization of the stics crop model. Quae, VersaillesGoogle Scholar
  27. 27.
    Constantin J, Beaudoin N, Launay M, Duval J, Mary B (2012) Long-term nitrogen dynamics in various catch crop scenarios: test and simulations with STICS model in a temperate climate. Agric Ecosyst Environ 147:36–46. doi: 10.1016/j.agee.2011.06.006 CrossRefGoogle Scholar
  28. 28.
    Coucheney E, Buis S, Launay M, Constantin J, Mary B, García de Cortázar-Atauri I, Ripoche D, Beaudoin N, Ruget F, Andrianarisoa KS, Le Bas C, Justes E, Léonard J (2015) Accuracy, robustness and behavior of the STICS soil–crop model for plant, water and nitrogen outputs: evaluation over a wide range of agro-environmental conditions in France. Environ Model Softw 64:177–190. doi: 10.1016/j.envsoft.2014.11.024 CrossRefGoogle Scholar
  29. 29.
    Beaudoin N, Launay M, Sauboua E, Ponsardin G, Mary B (2008) Evaluation of the soil crop model STICS over 8 years against the “on farm” database of Bruyeres catchment. Eur J Agron 29(1):46–57. doi: 10.1016/j.eja.2008.03.001 CrossRefGoogle Scholar
  30. 30.
    Beaudoin N, Saad JK, Van Laethem C, Machet JM, Maucorps J, Mary B (2005) Nitrate leaching in intensive agriculture in Northern France: effect of farming practices, soils and crop rotations. Agric Ecosyst Environ 111(1-4):292–310. doi: 10.1016/j.agee.2005.06.006 CrossRefGoogle Scholar
  31. 31.
    R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
  32. 32.
    Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2014) nlme: linear and nonlinear mixed effects models.
  33. 33.
    Lenth RV (2014) lsmeans: least-squares means.
  34. 34.
    Hickman GC, Vanloocke A, Dohleman FG, Bernacchi CJ (2010) A comparison of canopy evapotranspiration for maize and two perennial grasses identified as potential bioenergy crops. Glob Chang Biol Bioenergy 2(4):157–168. doi: 10.1111/j.1757-1707.2010.01050.x Google Scholar
  35. 35.
    Yimam YT, Ochsner TE, Kakani VG, Warren JG (2014) Soil water dynamics and evapotranspiration under annual and perennial bioenergy crops. Soil Sci Soc Am J 78(5):1584–1593. doi: 10.2136/sssaj2014.04.0165 CrossRefGoogle Scholar
  36. 36.
    Abraha M, Chen J, Chu H, Zenone T, John R, Su Y-J, Hamilton SK, Robertson GP (2015) Evapotranspiration of annual and perennial biofuel crops in a variable climate. Glob Chang Biol Bioenergy. doi: 10.1111/gcbb.12239 CrossRefGoogle Scholar
  37. 37.
    Cosentino SL, Patane C, Sanzone E, Copani V, Foti S (2007) Effects of soil water content and nitrogen supply on the productivity of Miscanthus giganteus Greef et Deu. in a Mediterranean environment. Ind Crop Prod 25(1):75–88. doi: 10.1016/j.indcrop.2006.07.006 CrossRefGoogle Scholar
  38. 38.
    Triana F, Nassi O Di Nasso N, Ragaglini G, Roncucci N, Bonari E (2015) Evapotranspiration, crop coefficient and water use efficiency of giant reed (Arundo donax L.) and miscanthus (Miscanthus x giganteus Greef et Deu.) in a Mediterranean environment. Glob Chang Biol Bioenergy 7(4):811–819. doi: 10.1111/gcbb.12172 CrossRefGoogle Scholar
  39. 39.
    Beale CV, Morison JIL, Long SP (1999) Water use efficiency of C 4 perennial grasses in a temperate climate. Agric For Meteorol 96(1/3):103–115. doi: 10.1016/s0168-1923(99)00042-8 CrossRefGoogle Scholar
  40. 40.
    Zeri M, Hussain MZ, Anderson-Teixeira KJ, DeLucia E, Bernacchi CJ (2013) Water use efficiency of perennial and annual bioenergy crops in central Illinois. J Geophys Res: Biogeosci 118(2):581–589. doi: 10.1002/jgrg.20052 CrossRefGoogle Scholar
  41. 41.
    Hamilton SK, Hussain MZ, Bhardwaj AK, Basso B, Robertson GP (2015) Comparative water use by maize, perennial crops, restored prairie, and poplar trees in the US Midwest. Environ Res Lett 10(6):064015. doi: 10.1088/1748-9326/10/6/064015 CrossRefGoogle Scholar
  42. 42.
    Zwart SJ, Bastiaanssen WGM (2004) Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agric Water Manag 69(2):115–133. doi: 10.1016/j.agwat.2004.04.007 CrossRefGoogle Scholar
  43. 43.
    Benoit M, Garnier J, Anglade J, Billen G (2014) Nitrate leaching from organic and conventional arable crop farms in the Seine Basin (France). Nutr Cycl Agroecosyst 100(3):285–299. doi: 10.1007/s10705-014-9650-9 CrossRefGoogle Scholar
  44. 44.
    Constantin J, Mary B, Laurent F, Aubrion G, Fontaine A, Kerveillant P, Beaudoin N (2010) Effects of catch crops, no till and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments. Agric Ecosyst Environ 135(4):268–278. doi: 10.1016/j.agee.2009.10.005 CrossRefGoogle Scholar
  45. 45.
    Nieder R, Kersebaum KC, Richter J (1995) Significance of nitrate leaching and long-term N immobilization after deepening the plough layers for the N regime of arable soils in N.W. Germany. Plant Soil 173(1):167–175. doi: 10.1007/bf00155528 CrossRefGoogle Scholar
  46. 46.
    Simmelsgaard SE (1998) The effect of crop, N-level, soil type and drainage on nitrate leaching from Danish soil. Soil Use Manag 14(1):30–36. doi: 10.1111/j.1475-2743.1998.tb00607.x CrossRefGoogle Scholar
  47. 47.
    Beaudoin N, Denys D, Muller JC, Monbrun MD, Ledain C (1992) Influence d'une culture de luzerne sur le lessivage du nitrate dans les sols de Champagne crayeuse. Fourrages 129:45–57Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.INRA, UR 1158 AgroImpactBarenton-BugnyFrance

Personalised recommendations