Advertisement

BioEnergy Research

, Volume 9, Issue 2, pp 624–632 | Cite as

The Possibility of Meeting Greenhouse Energy and CO2 Demands Through Utilisation of Cucumber and Tomato Residues

  • Marta OleszekEmail author
  • Jerzy Tys
  • Dariusz Wiącek
  • Aleksandra Król
  • Jan Kuna
Article

Abstract

The article examines the possibility of using residues from greenhouse cucumber and tomato cultivation as biomass for energy and CO2 production in order to meet greenhouse needs. Methane fermentation and combustion were compared. Moreover, the legitimacy of ensiling as a storage method for biogas plant was evaluated. The tested waste was found to be an unsuitable feedstock for the production of silage due to low sugar and high protein content. Fresh waste had a higher biogas yield than silage; however, its fermentation lasted longer. Furthermore, the results showed that, in the case of fresh residues, the methane fermentation proved to be a more energy-efficient process, while air-dry biomass is a more sustainable feedstock for combustion. The energy and CO2 balance showed that, regardless of the method used, the available quantity of waste is too small to meet the greenhouse needs.

Keywords

Biogas Greenhouse production Combustion Organic waste Tomato Cucumber 

Notes

Acknowledgments

The authors would like to express thanks to the employees of the Chair of Plant Horticulture and Fertilization, University of Life Sciences in Lublin, for providing the material for investigations.

References

  1. 1.
    CSO (Central Statistical Office in Poland) (2015) Crops production results in 2014. Statistical Publishing Establishment, Warsaw, p 94Google Scholar
  2. 2.
    Boulard T, Raeppel C, Brun R, Lecompte F, Hayer F, Carmassi G, Gaillard G (2011) Environmental impact of greenhouse tomato production in France. Agron Sustain Dev 31:757–777CrossRefGoogle Scholar
  3. 3.
    Pietzsch M, Meyer J (2008) Use of reject heat from biogas power plants for greenhouse heating. Acta Hort (ISHS) 801:719–724CrossRefGoogle Scholar
  4. 4.
    Menardo S, Bauer A, Theuretzbacher F, Piringer G, Nilsen PJ, Balsari P, Pavliska O, Amon T (2013) Biogas production from steam-exploded miscanthus and utilization of biogas energy and CO2 in greenhouses. BioEnergy Res 6(2):620–630CrossRefGoogle Scholar
  5. 5.
    Szul T (2011) Demand for energy to heat glasshouses and polytunnels in rural area of Lublin province. Technika Rolnicza, Ogrodnicza, Leśna 6:26–27Google Scholar
  6. 6.
    Oleszek M, Tys J (2013) Lab scale measurement of biogas yield. Przemysł Chemiczny 1(92):126–130Google Scholar
  7. 7.
    Jagadabhi PS, Kaparaju P, Rintala J (2011) Two-stage anaerobic digestion of tomato, cucumber, common reed and grass silage in leach-bed reactors and upflow anaerobic sludge blanket reactors. Bioresour Technol 102(7):4726–4733CrossRefGoogle Scholar
  8. 8.
    Amon T, Amon B, Kryvoruchko V, Zollitsch W, Mayer K, Gruber L (2007) Biogas production from maize and dairy cattle manure—influence of biomass composition on the methane yield. Agric Ecosyst Environ 118(1–4):173–182CrossRefGoogle Scholar
  9. 9.
    Krzemińska I, Nawrocka A, Piasecka A, Jagielski P, Tys J (2015) Cultivation of chlorella protothecoides in photobioreactors: the combined impact of photoperiod and CO2 concentration. Eng Life Sci 15:533–541CrossRefGoogle Scholar
  10. 10.
    Romano RT, Zhang R (2011) Anaerobic digestion of onion residuals using a mesophilic anaerobic phased solids digester. Biomass Bioenergy 35:4174–4179CrossRefGoogle Scholar
  11. 11.
    Durán-Garcia M, Ramirez Y, Bravo R, Rojas-Solórzano L (2012) Biogas home-production assessment using a selective sample of organic vegetable wastes. A preliminary study. Interciencia 37(2):128–132Google Scholar
  12. 12.
    Scano EA, Asquer C, Pistis A, Ortu L, Demontis V, Cocco D (2014) Biogas from anaerobic digestion of fruit and vegetable wastes: experimental results on pilot-scale and preliminary performance evaluation of a full-scale power plant. Energy Convers Manag 77:22–30CrossRefGoogle Scholar
  13. 13.
    Telmo C, Lousada J (2011) Heating values of wood pellets from different species. Biomass Bioenergy 35(7):2634–2639CrossRefGoogle Scholar
  14. 14.
    Lewandowski I, Kauter D (2003) The influence of nitrogen fertilizer on the yield and combustion quality of whole grain crops for solid fuel use. Ind Crop Prod 17:103–117CrossRefGoogle Scholar
  15. 15.
    Jenkins BM, Baxter LL, Miles TR Jr, Miles TR (1998) Combustion properties of biomass. Fuel Process Technol 54:17–46CrossRefGoogle Scholar
  16. 16.
    Cheuk W, Lo KV, Branion RMR, Fraser B (2003) Benefits of sustainable waste management in the vegetable greenhouse industry. J Environ Sci Health B 38(6):855–863CrossRefGoogle Scholar
  17. 17.
    Suárez-Estrella F, Vargas-García MC, López MJ, Moreno J (2007) Effect of horticultural waste composting on infected plant residues with pathogenic bacteria and fungi: integrated and localized sanitation. Waste Manag 27:886–892CrossRefGoogle Scholar
  18. 18.
    Belhadj S, Joute Y, Bari HE, Serrano A, Gil A, Siles JA, Chica AF, Martin MA (2014) Evaluation of the co-digestion of sewage sludge and tomato waste at mesophilic temperature. Appl Biochem Biotechnol 172:3862–3874CrossRefGoogle Scholar
  19. 19.
    Saev M, Koumanova B, Simeonov M (2009) Anaerobic co-digestion of wasted tomatoes and cattle dung for biogas production. J Univ Chem Technol Metall 44(1):55–60Google Scholar
  20. 20.
    Nurzyński J, Jarosz Z, Michałojć Z (2012) Yielding and chemical composition of greenhouse tomato fruit grown on straw or rockwool substrate. Acta Sci Pol Hortorum Cultus 11(3):79–89Google Scholar
  21. 21.
    Oleszek M, Król A, Tys J, Matyka M, Kulik M (2014) Comparison of biogas production from wild and cultivated varieties of reed canary grass. Bioresour Technol 156:303–306CrossRefGoogle Scholar
  22. 22.
    Oleszek M, Matyka M, Lalak J, Tys J, Paprota E (2013) Characterization of Sida hermaphrodita as a feedstock for anaerobic digestion process. J Food Agric Environ 11(3,4):1839–1841Google Scholar
  23. 23.
    Horttanainen M, Kaikko J, Bergman R, Pasila-Lehtinen M, Nerg J (2010) Performance analysis of power generating sludge combustion plant and comparison against other sludge treatment technologies. Appl Therm Eng 30(2):110–118CrossRefGoogle Scholar
  24. 24.
    Mohd-Setapar SH, Abd-Talib N, Aziz R (2012) Review on crucial parameters of silage quality. APCBEE Procedia 3:99–103CrossRefGoogle Scholar
  25. 25.
    Gebrehanna MM, Gordon RJ, Madani A, VenderZaag AC, Wood DJ (2014) Silage effluent management: a review. J Environ Manag 143(1):113–122CrossRefGoogle Scholar
  26. 26.
    Beaulieu R, Seoane JR, Savoie P, Tremblay D, Tremblay GF, Thériault R (1993) Effect of dry matter content on the nutritive value of individual wrapped round-bale timothy silage fed to sheep. Can J Anim Sci 73(2):343–354CrossRefGoogle Scholar
  27. 27.
    Radkowski A, Kuboń M (2007) Influence of the green fodders harvesting on the quality of producing silages (in Polish). Inżynieria Rolnicza 7(95):177–182Google Scholar
  28. 28.
    McEniry J, Allen E, Murphy JD, O’Kiely P (2014) Grass for biogas production: the impact of silage fermentation characteristics on methane yield in two contrasting biomethane potential test systems. Renew Energy 63:524–530CrossRefGoogle Scholar
  29. 29.
    Muck RE (1988) Factors influencing silage quality and their implication for management. J Dairy Sci 71(11):2992–3002CrossRefGoogle Scholar
  30. 30.
    Puyuelo B, Ponsá S, Gea T, Sánchez A (2011) Determining C/N ratios for typical organic wastes using biodegradable fractions. Chemosphere 85(4):653–659CrossRefGoogle Scholar
  31. 31.
    Kafle GK, Kim SH (2013) Effects of chemical compositions and ensiling on the biogas productivity and degradation rates of agricultural and food processing by-products. Bioresour Technol 142:553–561CrossRefGoogle Scholar
  32. 32.
    Kandel TP, Sutaryo S, Møller HB, Jørgensen U, Lærke PE (2013) Chemical composition and methane yield of reed canary grass as influenced by harvesting time and harvest frequency. Bioresour Technol 130:659–666CrossRefGoogle Scholar
  33. 33.
    Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99(17):7928–7940CrossRefGoogle Scholar
  34. 34.
    Wagner AO, Lins P, Malin C, Reitschuler C, Illmer P (2013) Impact of protein-, lipid- and cellulose-containing complex substrates on biogas production and microbial communities in batch experiments. Sci Total Environ 458–460:256–266CrossRefGoogle Scholar
  35. 35.
    Jacobi HF, Ohl S, Thiessen E, Hartung E (2012) NIRS-aided monitoring and prediction of biogas yields from maize silage at a full-scale biogas plant applying lumped kinetics. Bioresour Technol 103(1):162–172CrossRefGoogle Scholar
  36. 36.
    Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34(6):755–781CrossRefGoogle Scholar
  37. 37.
    Skoulou V, Zabaniotou A (2007) Investigation of agricultural and animal wastes in Greece and their allocation to potential application for energy production. Renew Sust Energ Rev 11:1698–1719CrossRefGoogle Scholar
  38. 38.
    Us E, Perendeci NA (2012) Improvement of methane production from greenhouse residues: optimization of thermal and H2SO4 pretreatment process by experimental design. Chem Eng J 181–182:120–131CrossRefGoogle Scholar
  39. 39.
    Miles TR, Miles TR Jr, Baxter LL, Bryers RW, Jenkins BM, Oden LL (1995) Alkali deposits found in biomass power plants: a preliminary investigation of their extent and nature. National Renewable Energy Laboratory, GoldenCrossRefGoogle Scholar
  40. 40.
    Oniszk-Popławska A, Matyka M, Dagny-Ryńska E (2014) Evaluation of a long-term potential for the development of agricultural biogas plants: a case study for the Lubelskie Province, Poland. Renew Sustain Energy Rev 36:329–349CrossRefGoogle Scholar
  41. 41.
    Igliński B, Buczkowski R, Iglińska A, Cichosz M, Piechota G, Kujawski W (2012) Agricultural biogas plants in Poland: investment process, economical and environmental aspects, biogas potential. Renew Sust Energ Rev 16(7):4890–4900CrossRefGoogle Scholar
  42. 42.
    Triolo JM, Pedersen L, Qu H, Sommer SG (2012) Biochemical methane potential and anaerobic biodegradability of non-herbaceous and herbaceous phytomass in biogas production. Bioresour Technol 125:226–232CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Marta Oleszek
    • 1
    Email author
  • Jerzy Tys
    • 1
  • Dariusz Wiącek
    • 1
  • Aleksandra Król
    • 1
  • Jan Kuna
    • 1
  1. 1.Institute of Agrophysics Polish Academy of SciencesLublinPoland

Personalised recommendations