Advertisement

BioEnergy Research

, Volume 9, Issue 2, pp 610–623 | Cite as

Can Biomethane Potential (BMP) Be Predicted from Other Variables Such As Biochemical Composition in Lignocellulosic Biomass and Related Organic Residues?

  • Rémy BayardEmail author
  • Xun Liu
  • Hassen Benbelkacem
  • Pierre Buffiere
  • Rémy Gourdon
Article

Abstract

The potential of methane production by anaerobic digestion of lignocellulosic biomass depends not only on the availability of the resources in the considered territory, but also on their physico-chemical characteristics. Relevant methods of characterization are, therefore, needed to select and possibly combine the most appropriate biomass substrates in order to optimize energy recovery through anaerobic digestion processes. The objective of the present study was to determine whether biomethane potential of such substrates could be predicted from a limited number of variables more rapidly or determined more easily. A set of 36 biomass substrates and organic residues from a variety of origins was analyzed for total and easily hydrosoluble organic matter fractions (volatile solid, VS and soluble chemical oxygen demand, SCOD), neutral detergent soluble fraction (SOL), hemicelluloses (HEM), cellulose (CELL), and lignin-like residual fractions (RES). Bioreactivity of all samples was also measured by experimental assays (biochemical oxygen demand, BOD and biochemical methane potential, BMP). The whole set of data thereby obtained was analyzed statistically considering one dependent variable (BMP), and six independent variables (SCOD, SOL, HEM, CELL, RES, and BOD). Partial least square (PLS) analysis revealed very clearly a positive correlation between BMP and BOD, which were both anti-correlated with RES. On the other hand, no correlations were observed between BMP, SCOD, HEM, and CELL contents. PLS analysis showed that BMP was significantly correlated to the six independent variables. The most influential variables were found to be RES and BOD, and a polynomial model was successfully validated for the prediction of BMP from RES and BOD.

Keywords

Biochemical methane potential Biodegradation Anaerobic digestion Biomass Organic waste Lignocellulose Cellulose Lignin Correlation Statistical analysis 

Abbreviations

AD

Anaerobic digestion

BDAero

Bioconversion yield under aerobic condition

BDAnae

Bioconversion yield under anaerobic condition

BOD

Biological oxygen demand after 28 days of incubation as mass of oxygen consumed by TS or VS in 28 days of incubation at 30 °C (g kg−1)

BMP

Biochemical methane production after 60 days of incubation by VS in 60 days of incubation at 35 °C (L kg−1)

CELL

Cellulose-like content from Van Soest sequential extraction by VS (g kg−1)

Cellulose

Cellulose content from NREL extraction procedure by VS (g kg−1)

CODTot

Total chemical oxygen demand by TS (gO2 kg−1)

HEM

Hemicellulose-like content from Van Soest sequential extraction by VS (g kg−1)

PLS

Partial least square analysis

PRESS

Predicted residual sum of squares

R2

Correlation coefficient

RES

Residual lignin-like content from Van Soest sequential extractions by VS (g kg−1)

RMSW

Residual municipal solid waste

rRMSE

Relative root mean square error

SCOD

Soluble chemical oxygen demand by VS in leachate collected from leaching test at a L/S ratio of 10 (gO2 kg−1)

SOL

Soluble fraction from Van Soest sequential extractions by VS (g kg−1)

TOC

Total organic carbon by TS (g kg−1)

TS

Total solid

VIP

Variable importance in projection

VS

Volatile solid (g kg−1)

References

  1. 1.
    Buffière P, Bayard R, Germain P (2009) Freins au développement de la filière biogaz : les besoins en recherche et développement. ETUDE RECORD N° 07-0418/1A. Rapport final. 92Google Scholar
  2. 2.
  3. 3.
    Davidsson A, Gruvberger C, Christensen TH, Hansen TL, Jensen JLC (2007) Methane yield in source-sorted organic fraction of municipal solid waste. Waste Manage 27:406–414CrossRefGoogle Scholar
  4. 4.
    Bidlingmaier W, Sidaine J-M, Papadimitriou EK (2004) Separate collection and biological waste treatment in the European community. Rev Environ Sci Biotechnol 3:307–320CrossRefGoogle Scholar
  5. 5.
    Chandler JA, Jewell WJ, Gossett JM (1980) Predicting methane fermentation biodegradability. Biotechnol Bioengin Symp Ser 10:93–107Google Scholar
  6. 6.
    Gunaseelan VN (2007) Regression models of ultimate methane yields of fruits and vegetable solid wastes, sorghum and napiergrass on chemical composition. Bioresour Technol 98(6):1270–1277CrossRefGoogle Scholar
  7. 7.
    Liu X, Bayard R, Benbelkacem H, Buffiere P, Gourdon R (2014) Évaluation du potentiel biométhanogène de biomasses lignocellulosiques. Déchets, Sci et Tech 67:37–48Google Scholar
  8. 8.
    Liu X, Bayard R, Benbelkacem H, Buffiere P, Gourdon R (2015) Evaluation of the correlations between biodegradability of lignocellulosic feedstocks in anaerobic digestion process and their biochemical characteristics. Biomass Bioenergy 81:534–543CrossRefGoogle Scholar
  9. 9.
    Monlau F, Sambusiti C, Barakat A, Guo XM, Latrille E, Trably E, Steyer J-P, Carrere H (2012) Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials. Envion Sci Technol 46:12217–25CrossRefGoogle Scholar
  10. 10.
    Noike T, Endo G, Chang JE, Yaguchi JI, Matsumoto JI (1985) Characteristics of carbohydrate degradation and the rate-limiting step in anaerobic digestion. Biotechnol Bioeng 27:1482–1489CrossRefGoogle Scholar
  11. 11.
    Stinson JA, Ham RK (1995) Effect of lignin on the anaerobic decomposition of cellulose as determined through the use of a biochemical methane potential method. Envion Sci Technol 29:2305–2310CrossRefGoogle Scholar
  12. 12.
    Tong X, Smith LH, McCarty PL (1990) Methane fermentation of selected lignocellulosic materials. Biomass 21:239–255CrossRefGoogle Scholar
  13. 13.
    Triolo JM, Sommer SG, Maller HB, Weisbjerg MR, Jiang XY (2011) A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential. Bioresour Technol 102:9395–9402CrossRefGoogle Scholar
  14. 14.
    Triolo JM, Pedersen L, Qu H, Sommer SG (2012) Biochemical methane potential and anaerobic biodegradability of non-herbaceous and herbaceous phytomass in biogas production. Bioresour Technol 125:226–232CrossRefGoogle Scholar
  15. 15.
    Xu F, Wang ZW, Li Y (2014) Predicting the methane yield of lignocellulosic biomass in mesophilic solid-state anaerobic digestion based on feedstock characteristics and process parameters. Bioresour Technol 173:168–76CrossRefGoogle Scholar
  16. 16.
    Fan LT, Lee Y-H, Gharpuray MM (1982) The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis. Adv Biochem Eng 23:157–187Google Scholar
  17. 17.
    Jeffries TW (1990) Biodegradation of lignin-carbohydrate complexes. Biodegradation 1:163–176CrossRefGoogle Scholar
  18. 18.
    Buffière P, Loisel D, Bernet N, Delgenes JP (2006) Towards new indicators for the prediction of solid waste anaerobic digestion properties. Wat Sci Technol 53:233–241CrossRefGoogle Scholar
  19. 19.
    Liew LN, Shi J, Li Y (2012) Methane production from solid-state anaerobic digestion of lignocellulosic biomass. Biomass Bioenergy 46:125–132CrossRefGoogle Scholar
  20. 20.
    Rodriguez C, Hiligsmann S, Ongena M, Charlier R, Thonart P (2005) Development of an enzymatic assay for the determination of cellulose bioavailability in municipal solid waste. Biodegradation 16:415–422CrossRefGoogle Scholar
  21. 21.
    Young LY, Frazer AC (1987) The fate of lignin and lignin-derived compounds in anaerobic environments. Geomicrobiol J 5:261–293CrossRefGoogle Scholar
  22. 22.
    AFNOR NF EN 15169 (2005) Caractérisation des déchets - Détermination de la perte au feu des déchets, des boues et des sédiments. Mesure de la teneur en résidu calciné par calcination à 550°C. AFNOR, La Plaine Saint-Denis (Fr)Google Scholar
  23. 23.
    ISO 14235 (1998) Soil quality - Determination of organic carbon by sulfochromic oxidation. International Organization for Standardization, GenevaGoogle Scholar
  24. 24.
    ISO 10694 (1995) Soil quality - Determination of organic and total carbon after dry combustion (elementary analysis). International Organization for Standardization, GenevaGoogle Scholar
  25. 25.
    AFNOR NF EN 12457–2 (2002) Caractérisation des déchets - Lixiviation - Essai de conformité pour lixiviation des déchets fragmentés et des boues - Partie2: essai en bâchée unique avec un rapport liquide-solide de 10 l/kg et une granularité inférieure à 4 mm (sans ou avec réduction de la granularité). AFNOR, La Plaine Saint-Denis (Fr)Google Scholar
  26. 26.
    ISO 15705 (2002) Water quality - Determination of the chemical oxygen demand index (ST-COD) - Small-scale sealed-tube method. International Organization for Standardization, GenevaGoogle Scholar
  27. 27.
    Van Soest PJ, Wine RH (1967) Use of detergents in the analysis of fibrous feeds IV determination of plant cell wall constituents. J Assoc Off Anal Chem 50:50–55Google Scholar
  28. 28.
    Mertens DR (2002) Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing beakers or crucibles: collaborative study. J Assoc Off Assoc Chem Int 85:1217–1240Google Scholar
  29. 29.
    ISO 10707 (1994) Water quality - Evaluation in an aqueous medium of the “ultimate” aerobic biodegradability of organic compounds - Method by analysis of biochemical oxygen demand (closed bottle test). International Organization for Standardization, GenevaGoogle Scholar
  30. 30.
    Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos J, Guwy A et al (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59:927–34CrossRefGoogle Scholar
  31. 31.
    ISO 11734 (1995) Water quality - Evaluation of the “ultimate” anaerobic biodegradability of organic compounds in digested sludge - Method by measurement of the biogas production. International Organization for Standardization, GenevaGoogle Scholar
  32. 32.
    Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58:109–130CrossRefGoogle Scholar
  33. 33.
    Barrena R, d’Imporzano G, Ponsá S, Gea T, Artola A, Vázquez F, Sánchez A, Adani F (2009) In search of a reliable technique for the determination of the biological stability of the organic matter in the mechanical–biological treated waste. J Hazard Mat 169:1065–1072CrossRefGoogle Scholar
  34. 34.
    Cossu R, Raga R (2008) Test methods for assessing the biological stability of biodegradable waste. Waste Manage 28:381–388CrossRefGoogle Scholar
  35. 35.
    Ponsá S, Gea T, Alerm L, Cerezo J, Sánchez A (2008) Comparison of aerobic and anaerobic stability indices through a MSW biological treatment process. Waste Manage 28:2735–2742CrossRefGoogle Scholar
  36. 36.
    Motte JC, Escudié R, Beaufils N, Steyer JP, Bernet N, Delgenès J, Dumas C (2014) Morphological structures of wheat straw strongly impacts its anaerobic digestion. Ind Crops Prod 52:695–701CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Rémy Bayard
    • 1
    Email author
  • Xun Liu
    • 1
  • Hassen Benbelkacem
    • 1
  • Pierre Buffiere
    • 1
  • Rémy Gourdon
    • 1
  1. 1.Université de Lyon, INSA Lyon, LGCIE-DEEP, EA4126Villeurbanne cedexFrance

Personalised recommendations