Advertisement

Prediction of occult lymph node metastasis using SUV, volumetric parameters and intratumoral heterogeneity of the primary tumor in T1-2N0M0 lung cancer patients staged by PET/CT

  • Ming-li Ouyang
  • Hu-wei Xia
  • Man-man Xu
  • Jie Lin
  • Li-li Wang
  • Xiang-wu Zheng
  • Kun TangEmail author
Original Article

Abstract

Objective

The aim of this study was to identify whether PET/CT-related metabolic parameters of the primary tumor could predict occult lymph node metastasis (OLM) in patients with T1-2N0M0 NSCLC staged by 18F-FDG PET/CT.

Methods

215 patients with clinical T1-2N0M0 (cT1-2N0M0) NSCLC who underwent both preoperative FDG PET/CT and surgical resection with the systematic lymph node dissection were included in the retrospective study. Heterogeneity factor (HF) was obtained by finding the derivative of the volume-threshold function from 40 to 80% of the maximum standardized uptake value (SUVmax). Univariate and multivariate stepwise logistic regression analyses were used to identify these PET parameters and clinicopathological variables associated with OLM.

Results

Statistically significant differences were detected in sex, tumor site, SUVmax, mean SUV (SUVmean), metabolic tumor volume (MTV), total lesion glycolysis and HF between patients with adenocarcinoma (ADC) and squamous cell carcinoma (SQCC). OLM was detected in 36 (16.7%) of 215 patients (ADC, 27/152 = 17.8% vs. SQCC, 9/63 = 14.3%). In multivariate analysis, MTV (OR = 1.671, P = 0.044) in ADC and HF (OR = 8.799, P = 0.023) in SQCC were potent associated factors for the prediction of OLM. The optimal cutoff values of 5.12 cm3 for MTV in ADC, and 0.198 for HF in SQCC were determined using receiver operating characteristic curve analysis.

Conclusions

In conclusion, MTV was an independent predictor of OLM in cT1-2N0M0 ADC patients, while HF might be the most powerful predictor for OLM in SQCC. These findings would be helpful in selecting patients who might be considered as candidates for sublobar resection or new stereotactic ablative radiotherapy.

Keywords

Non-small cell lung cancer Heterogeneity factor Metabolic tumor volume 18F-FDG PET/CT Occult nodal metastasis 

Notes

Acknowledgements

Kun Tang kindly provided statistical advice for this manuscript. The authors would like to thank Xiangwu Zheng, MD for the study design and editing the draft of the manuscript.

Funding

This research did not receive any funding.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Ethics approval

The local Institutional Review Board approved this study. Since this was a retrospective study with secondary data, the Local Ethics Committee did not request individual informed consent.

References

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.CrossRefGoogle Scholar
  2. 2.
    Grills IS, Mangona VS, Welsh R, Chmielewski G, McInerney E, Martin S, et al. Outcomes after stereotactic lung radiotherapy or wedge resection for stage I non-small-cell lung cancer. J Clin Oncol. 2010;28(6):928–35.CrossRefGoogle Scholar
  3. 3.
    Filippi AR, Franco P, Ricardi U. Is stereotactic ablative radiotherapy an alternative to surgery in operable stage I non-small cell lung cancer? Rep Pract Oncol Radiother. 2014;19(4):275–9.CrossRefGoogle Scholar
  4. 4.
    Lardinois D, Weder W, Hany TF, Kamel EM, Korom S, Seifert B, et al. Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med. 2003;348(25):2500–7.CrossRefGoogle Scholar
  5. 5.
    Shim SS, Lee KS, Kim BT, Chung MJ, Lee EJ, Han J, et al. Non-small cell lung cancer: prospective comparison of integrated FDG PET/CT and CT alone for preoperative staging. Radiology. 2005;236(3):1011–9.CrossRefGoogle Scholar
  6. 6.
    Birim O, Kappetein AP, Stijnen T, Bogers AJ. Meta-analysis of positron emission tomographic and computed tomographic imaging in detecting mediastinal lymph node metastases in nonsmall cell lung cancer. Ann Thorac Surg. 2005;79(1):375–82.CrossRefGoogle Scholar
  7. 7.
    Kim BT, Lee KS, Shim SS, Choi JY, Kwon OJ, Kim H, et al. Stage T1 non-small cell lung cancer: preoperative mediastinal nodal staging with integrated FDG PET/CT—a prospective study. Radiology. 2006;241(2):501–9.CrossRefGoogle Scholar
  8. 8.
    Park HK, Jeon K, Koh WJ, Suh GY, Kim H, Kwon OJ, et al. Occult nodal metastasis in patients with non-small cell lung cancer at clinical stage IA by PET/CT. Respirology. 2010;15(8):1179–84.CrossRefGoogle Scholar
  9. 9.
    Li L, Ren S, Zhang Y, Guan Y, Zhao J, Liu J, et al. Risk factors for predicting the occult nodal metastasis in T1-2N0M0 NSCLC patients staged by PET/CT: potential value in the clinic. Lung Cancer. 2013;81(2):213–7.CrossRefGoogle Scholar
  10. 10.
    Hyun SH, Choi JY, Shim YM, Kim K, Lee SJ, Cho YS, et al. Prognostic value of metabolic tumor volume measured by 18F-fluorodeoxyglucose positron emission tomography in patients with esophageal carcinoma. Ann Surg Oncol. 2010;17(1):115–22.CrossRefGoogle Scholar
  11. 11.
    Lee P, Weerasuriya DK, Lavori PW, Quon A, Hara W, Maxim PG, et al. Metabolic tumor burden predicts for disease progression and death in lung cancer. Int J Radiat Oncol Biol Phys. 2007;69(2):328–33.CrossRefGoogle Scholar
  12. 12.
    Son SH, Kim DH, Hong CM, Kim CY, Jeong SY, Lee SW, et al. Prognostic implication of intratumoral metabolic heterogeneity in invasive ductal carcinoma of the breast. BMC Cancer. 2014;14:585.CrossRefGoogle Scholar
  13. 13.
    Kim DH, Song BI, Hong CM, Jeong SY, Lee SW, Lee J, et al. Metabolic parameters using (1)(8)F-FDG PET/CT correlate with occult lymph node metastasis in squamous cell lung carcinoma. Eur J Nucl Med Mol Imaging. 2014;41(11):2051–7.CrossRefGoogle Scholar
  14. 14.
    Park SY, Yoon JK, Park KJ, Lee SJ. Prediction of occult lymph node metastasis using volume-based PET parameters in small-sized peripheral non-small cell lung cancer. Cancer Imaging. 2015;15:21.CrossRefGoogle Scholar
  15. 15.
    Kidd EA, Grigsby PW. Intratumoral metabolic heterogeneity of cervical cancer. Clin Cancer Res. 2008;14(16):5236–41.CrossRefGoogle Scholar
  16. 16.
    Kim SJ, Pak K, Chang S. Determination of regional lymph node status using (18)F-FDG PET/CT parameters in oesophageal cancer patients: comparison of SUV, volumetric parameters and intratumoral heterogeneity. Br J Radiol. 2016;89(1058):20150673.CrossRefGoogle Scholar
  17. 17.
    Ouyang ML, Tang K, Xu MM, Lin J, Li TC, Zheng XW. Prediction of occult lymph node metastasis using tumor-to-blood standardized uptake ratio and metabolic parameters in clinical N0 lung adenocarcinoma. Clin Nucl Med. 2018;43(10):715–20.Google Scholar
  18. 18.
    Kim BS, Pak K, Yi KI, Kim IJ, Roh HJ, Cho KS. Prognostic value of tumoral heterogeneity and volumetric parameters as measured by F18-FDG PET/CT in sinonasal cancer. Eur Arch Otorhinolaryngol. 2017;274(3):1437–43.CrossRefGoogle Scholar
  19. 19.
    Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48(6):932–45.CrossRefGoogle Scholar
  20. 20.
    Miller TR, Grigsby PW. Measurement of tumor volume by PET to evaluate prognosis in patients with advanced cervical cancer treated by radiation therapy. Int J Radiat Oncol Biol Phys. 2002;53(2):353–9.CrossRefGoogle Scholar
  21. 21.
    Okada M, Tsutani Y, Ikeda T, Misumi K, Matsumoto K, Yoshimura M, et al. Radical hybrid video-assisted thoracic segmentectomy: long-term results of minimally invasive anatomical sublobar resection for treating lung cancer. Interact Cardiovasc Thorac Surg. 2012;14(1):5–11.CrossRefGoogle Scholar
  22. 22.
    Rusch VW, Hawes D, Decker PA, Martin SE, Abati A, Landreneau RJ, et al. Occult metastases in lymph nodes predict survival in resectable non-small-cell lung cancer: report of the ACOSOG Z0040 trial. J Clin Oncol. 2011;29(32):4313–9.CrossRefGoogle Scholar
  23. 23.
    Veeramachaneni NK, Battafarano RJ, Meyers BF, Zoole JB, Patterson GA. Risk factors for occult nodal metastasis in clinical T1N0 lung cancer: a negative impact on survival. Eur J Cardiothorac Surg. 2008;33(3):466–9.CrossRefGoogle Scholar
  24. 24.
    Mamede M, Higashi T, Kitaichi M, Ishizu K, Ishimori T, Nakamoto Y, et al. [18F]FDG uptake and PCNA, Glut-1, and Hexokinase-II expressions in cancers and inflammatory lesions of the lung. Neoplasia. 2005;7(4):369–79.CrossRefGoogle Scholar
  25. 25.
    Ito T, Noguchi Y, Satoh S, Hayashi H, Inayama Y, Kitamura H. Expression of facilitative glucose transporter isoforms in lung carcinomas: its relation to histologic type, differentiation grade, and tumor stage. Mod Pathol. 1998;11(5):437–43.Google Scholar
  26. 26.
    Kato T, Ishikawa K, Aragaki M, Sato M, Okamoto K, Ishibashi T, et al. Optimal predictive value of preoperative serum carcinoembryonic antigen for surgical outcomes in stage I non-small cell lung cancer: differences according to histology and smoking status. J Surg Oncol. 2013;107(6):619–24.CrossRefGoogle Scholar
  27. 27.
    Kim DH, Jung JH, Son SH, Kim CY, Hong CM, Oh JR, et al. Prognostic significance of intratumoral metabolic heterogeneity on 18F-FDG PET/CT in pathological N0 non-small cell lung cancer. Clin Nucl Med. 2015;40(9):708–14.CrossRefGoogle Scholar
  28. 28.
    Ganeshan B, Goh V, Mandeville HC, Ng QS, Hoskin PJ, Miles KA. Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology. 2013;266(1):326–36.CrossRefGoogle Scholar
  29. 29.
    Miyoshi K, Moriyama S, Kunitomo T, Nawa S. Prognostic impact of intratumoral vessel invasion in completely resected pathologic stage I non-small cell lung cancer. J Thorac Cardiovasc Surg. 2009;137(2):429–34.CrossRefGoogle Scholar
  30. 30.
    Miyasaka Y, Suzuki K, Takamochi K, Matsunaga T, Oh S. The maximum standardized uptake value of fluorodeoxyglucose positron emission tomography of the primary tumour is a good predictor of pathological nodal involvement in clinical N0 non-small-cell lung cancer. Eur J Cardiothorac Surg. 2013;44(1):83–7.CrossRefGoogle Scholar
  31. 31.
    Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med. 2004;45(9):1519–27.Google Scholar
  32. 32.
    Keyes JW Jr. SUV: standard uptake or silly useless value? J Nucl Med. 1995;36(10):1836–9.Google Scholar
  33. 33.
    Hyun SH, Choi JY, Kim K, Kim J, Shim YM, Um SW, et al. Volume-based parameters of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography improve outcome prediction in early-stage non-small cell lung cancer after surgical resection. Ann Surg. 2013;257(2):364–70.CrossRefGoogle Scholar
  34. 34.
    Park SY, Cho A, Yu WS, Lee CY, Lee JG, Kim DJ, et al. Prognostic value of total lesion glycolysis by 18F-FDG PET/CT in surgically resected stage IA non-small cell lung cancer. J Nucl Med. 2015;56(1):45–9.CrossRefGoogle Scholar
  35. 35.
    Brown RS, Leung JY, Kison PV, Zasadny KR, Flint A, Wahl RL. Glucose transporters and FDG uptake in untreated primary human non-small cell lung cancer. J Nucl Med. 1999;40(4):556–65.Google Scholar
  36. 36.
    Pugachev A, Ruan S, Carlin S, Larson SM, Campa J, Ling CC, et al. Dependence of FDG uptake on tumor microenvironment. Int J Radiat Oncol Biol Phys. 2005;62(2):545–53.CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Nuclear Medicine 2019

Authors and Affiliations

  • Ming-li Ouyang
    • 1
  • Hu-wei Xia
    • 1
  • Man-man Xu
    • 1
  • Jie Lin
    • 1
  • Li-li Wang
    • 1
  • Xiang-wu Zheng
    • 1
  • Kun Tang
    • 1
    Email author
  1. 1.Department of PET/CT, Radiology Imaging CenterThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouPeople’s Republic of China

Personalised recommendations