Advertisement

Preliminary results of biodistribution and dosimetric analysis of [68Ga]Ga-DOTAZOL: a new zoledronate-based bisphosphonate for PET/CT diagnosis of bone diseases

  • Ambreen KhawarEmail author
  • Elisabeth Eppard
  • Frank Roesch
  • Hojjat Ahmadzadehfar
  • Stefan Kürpig
  • Michael Meisenheimer
  • Florian. C. Gaertner
  • Markus Essler
  • Ralph. A. Bundschuh
Original Article
  • 16 Downloads

Abstract

Objective

Pre-clinical studies with gallium-68 zoledronate ([68Ga]Ga-DOTAZOL) have proposed it to be a potent bisphosphonate for PET/CT diagnosis of bone diseases and diagnostic counterpart to [177Lu]Lu-DOTAZOL and [225Ac]Ac-DOTAZOL. This study aims to be the first human biodistribution and dosimetric analysis of [68Ga]Ga-DOTAZOL.

Methods

Five metastatic skeletal disease patients (mean age: 72 years, M: F; 4:1) were injected with 150–190 MBq (4.05–5.14 mCi) of [68Ga]Ga-DOTAZOL i.v. Biodistribution of [68Ga]Ga-DOTAZOL was studied with PET/CT initial dynamic imaging for 30 min; list mode over abdomen (reconstructed as six images of 300 s) followed by static (skull to mid-thigh) imaging at 45 min and 2.5 h with Siemens Biograph 2 PET/CT camera. Also, blood samples (8 time points) and urine samples (2 time points) were collected over a period of 2.5 h. Total activity (MBq) in source organs was determined using interview fusion software (MEDISO Medical Imaging Systems, Budapest, Hungary). A blood-based method for bone marrow self-dose determination and a trapezoidal method for urinary bladder contents residence time calculation were used. OLINDA/EXM version 2.0 software (Hermes Medical Solutions, Stockholm, Sweden) was used to generate residence times for source organs, organ absorbed doses and effective doses.

Results

High uptake in skeleton as target organ, kidneys and urinary bladder as organs of excretion and faint uptake in liver, spleen and salivary glands were seen. Qualitative and quantitative analysis supported fast blood clearance, high bone to soft tissue and lesion to normal bone uptake with [68Ga]Ga-DOTAZOL. Urinary bladder with the highest absorbed dose of 0.368 mSv/MBq presented the critical organ, followed by osteogenic cells, kidneys and red marrow receiving doses of 0.040, 0.031 and 0.027 mSv/MBq, respectively. The mean effective dose was found to be 0.0174 mSv/MBq which results in an effective dose of 2.61 mSv from 150 MBq.

Conclusions

Biodistribution of [68Ga]Ga-DOTAZOL was comparable to [18F]NaF, [99mTc]Tc-MDP and [68Ga]Ga-PSMA-617. With proper hydration and diuresis to reduce urinary bladder and kidney absorbed doses, it has clear advantages over [18F]NaF owing to its onsite, low-cost production and theranostic potential of personalized dosimetry for treatment with [177Lu]Lu-DOTAZOL and [225Ac]Ac-DOTAZOL.

Keywords

68Ga]Ga-DOTAZOL Biodistribution Theranostic radionuclides Metastatic skeletal disease Bronchial carcinoma 

Notes

Author contributions

The manuscript has been seen and approved by all authors. AK, MM, SK,EE: contributed equally in design and execution of study. AK, FR, HA, ME, RAB, FCG: contributed in drafting or revising of the manuscript critically for important intellectual content as well as final manuscript approval for submission and publication.

Funding

None.

Compliance with ethical standards

Conflict of interest

None of the authors have any potential conflicts of interest to disclose.

References

  1. 1.
    Gonzalez-Sistal A, Baltasar A, Herranz M, Ruibal A. Advances in medical imaging applied to bone metastases. In: Medical Imaging. InTech; 2011. http://www.intechopen.com/books/medical-imaging/advances-in-medical-imaging-applied-to-bone-metastases. Accessed 14 July 2017.
  2. 2.
    Agarwal M, Nayak P. Management of skeletal metastases: an orthopaedic surgeon′s guide. Indian J Orthop. 2015;49:83–100.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ulmert D, Solnes L, Thorek DL, Beyer T, Fujii T, Mochizuki T. Contemporary approaches for imaging skeletal metastasis. Bone Res. 2015;3:15024.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    O’Sullivan GJ, Carty FL, Cronin CG. Imaging of bone metastasis: an update. World J Radiol. 2015;7:202–11.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Damerla V, Packianathan S, Boerner PS, Jani AB, Vijayakumar S, Vijayakumar V. Recent developments in nuclear medicine in the management of bone metastases: a review and perspective. Am J Clin Oncol Cancer Clin Trials. 2005;28:513–20.CrossRefGoogle Scholar
  6. 6.
    Chatalic KLS, Heskamp S, Konijnenberg M, Molkenboer-Kuenen JDM, Franssen GM, Clahsen-van Groningen MC, et al. Towards personalized treatment of prostate cancer: PSMA I&T, a promising prostate-specific membrane antigen-targeted theranostic agent. Theranostics. 2016;6:849–61.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Luckman SP, Hughes DE, Coxon FP, Russell RGG, Rogers MJ. Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including ras. J Bone Miner Res. 1998;13:581–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Fellner M, Biesalski B, Bausbacher N, Kubícek V, Hermann P, Rösch F, et al. 68 Ga-BPAMD: PET-imaging of bone metastases with a generator based positron emitter. Nucl Med Biol. 2012;39:993–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Ogawa K, Ishizaki A. Well-designed bone-seeking radiolabeled compounds for diagnosis and therapy of bone metastases. Biomed Res Int. 2015;2015:676053.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fellner M, Riss P, Loktionova N, Zhernosekov K, Thews O, Geraldes CFGC, et al. Comparison of different phosphorus-containing ligands complexing 68Ga for PET-imaging of bone metabolism. Radiochim Acta. 2011;99:43–51.CrossRefGoogle Scholar
  11. 11.
    Agarwal KK, Singla S, Arora G, Bal C. 177Lu-EDTMP for palliation of pain from bone metastases in patients with prostate and breast cancer: a phase II study. Eur J Nucl Med Mol Imaging. 2015;42:79–88.CrossRefPubMedGoogle Scholar
  12. 12.
    Alavi M, Omidvari S, Mehdizadeh A, Jalilian AR, Bahrami-Samani A. Metastatic bone pain palliation using 177Lu-ethylenediaminetetramethylene phosphonic acid. World J Nucl Med. 2015;14:109–15.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mazzarri S, Guidoccio F, Mariani G. The emerging potential of 177Lu-EDTMP: an attractive novel option for radiometabolic therapy of skeletal metastases. Clin Trans Imaging. 2015;3:167–8.CrossRefGoogle Scholar
  14. 14.
    Shinto AS, Shibu D, Kamaleshwaran KK, Das T, Chakraborty S, Banerjee S, et al. 177Lu-EDTMP for treatment of bone pain in patients with disseminated skeletal metastases. J Nucl Med Technol. 2014;42:55–61.CrossRefPubMedGoogle Scholar
  15. 15.
    Yuan J, Liu C, Liu X, Wang Y, Kuai D, Zhang G, et al. Efficacy and safety of 177Lu-EDTMP in bone metastatic pain palliation in breast cancer and hormone refractory prostate cancer. Clin Nucl Med. 2013;38:88–92.CrossRefPubMedGoogle Scholar
  16. 16.
    Pfannkuchen N, Meckel M, Bergmann R, Bachmann M, Bal C, Sathekge M, et al. Novel radiolabeled bisphosphonates for PET diagnosis and endoradiotherapy of bone metastases. Pharmaceuticals. 2017;10:45.CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Meckel M, Bergmann R, Miederer M, Roesch F. Bone targeting compounds for radiotherapy and imaging: *Me(III)-DOTA conjugates of bisphosphonic acid, pamidronic acid and zoledronic acid. EJNMMI Radiopharm Chem. 2016;1:14.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Fellner M, Baum RP, Kubíček V, Hermann P, Lukeš I, Prasad V, et al. PET/CT imaging of osteoblastic bone metastases with 68 Ga- bisphosphonates: first human study. Eur J Nucl Med Mol Imaging. 2010;37:834.CrossRefPubMedGoogle Scholar
  19. 19.
    Baum RP, Kulkarni HR. Theranostics: from molecular imaging using Ga-68 labeled tracers and PET/CT to personalized radionuclide therapy—the Bad Berka Experience. Theranostics. 2012;2:437–47.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Holub J, Meckel M, Kubíček V, Rösch F, Hermann P. Gallium(III) complexes of NOTA-bis (phosphonate) conjugates as PET radiotracers for bone imaging. Contrast Media Mol Imaging. 2015;10:122–34.CrossRefPubMedGoogle Scholar
  21. 21.
    Bergmann R, Meckel M, Kubíček V, Pietzsch J, Steinbach J, Hermann P, et al. (177)Lu-labelled macrocyclic bisphosphonates for targeting bone metastasis in cancer treatment. EJNMMI Res. 2016;6:5.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ebetino FH, Hogan AML, Sun S, Tsoumpra MK, Duan X, Triffitt JT, et al. The relationship between the chemistry and biological activity of the bisphosphonates. Bone. 2011;49:20–33.CrossRefPubMedGoogle Scholar
  23. 23.
    Russell RGG. Bisphosphonates. Mode of action and pharmacology. Pediatrics. 2007;119(Supplement 2):150–62.CrossRefGoogle Scholar
  24. 24.
    Dalle Carbonare L, Zanatta M, Gasparetto A, Valenti MT. Safety and tolerability of zoledronic acid and other bisphosphonates in osteoporosis management. Drug Healthc Patient Saf. 2010;2:121–37.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Pfannkuchen N, Bausbacher N, Pektor S, Miederer M, Rosch F. In vivo evaluation of [225Ac]Ac-DOTA ZOL for α-therapy of bone metastases. Curr Radiopharm. 2018;11:223–30.CrossRefPubMedGoogle Scholar
  26. 26.
    Passah A, Tripathi M, Ballal S, Yadav MP, Kumar R, Roesch F, et al. Evaluation of bone-seeking novel radiotracer68Ga-NO2AP-Bisphosphonate for the detection of skeletal metastases in carcinoma breast. Eur J Nucl Med Mol Imaging. 2017;44:41–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Chopra A. 68 Ga-labeled (4-{[(bis(phosphonomethyl))carbamoyl]methyl}-7,10-bis(carboxymethyl)-1,4,7,10-tet raazacyclododec-1-yl)acetic acid (BPAMD). In: Molecular imaging and contrast agent database (MICAD). 2004. http://www.ncbi.nlm.nih.gov/pubmed/23193622. Accessed 27 Dec 2018.
  28. 28.
    Khawar A, Eppard E, Sinnes JP, Roesch F, Ahmadzadehfar H, Kürpig S, et al. [44Sc]Sc-PSMA-617 biodistribution and dosimetry in patients with metastatic castration-resistant prostate carcinoma. Clin Nucl Med. 2018;43:323–30.CrossRefPubMedGoogle Scholar
  29. 29.
    Stabin MG. Case studies. In: Fundamentals of nuclear medicine dosimetry. New York: Springer; 2008. pp. 119–70.CrossRefGoogle Scholar
  30. 30.
    ICRP. Basic anatomical and physiological data for use in radiological protection—the skeleton. ICRP Publication 70. Ann ICRP. 1995;25(2).Google Scholar
  31. 31.
    Hindorf C, Lindén O, Tennvall J, Wingårdh K, Strand SE. Evaluation of methods for red marrow dosimetry based on patients undergoing radioimmunotherapy. Acta Oncol (Madr). 2005;44:579–88.CrossRefGoogle Scholar
  32. 32.
    Shen S, DeNardo GL, Sgouros G, O’Donnell RT, DeNardo SJ. Practical determination of patient-specific marrow dose using radioactivity concentration in blood and body. J Nucl Med. 1999;40:2102–6.PubMedGoogle Scholar
  33. 33.
    Sgouros G, Stabin M, Erdi Y, Akabani G, Kwok C, Brill AB, et al. Red marrow dosimetry for radiolabeled antibodies that bind to marrow, bone, or blood components. Med Phys. 2000;27:2150–64.CrossRefPubMedGoogle Scholar
  34. 34.
    Siegel JA. Establishing a clinically meaningful predictive model of hematologic toxicity in nonmyeloablative targeted radiotherapy: practical aspects and limitations of red marrow dosimetry. CANCER Biother Radiopharm. 2005;20:126–40.CrossRefPubMedGoogle Scholar
  35. 35.
    Kurdziel KA, Shih JH, Apolo AB, Lindenberg L, Mena E, McKinney YY, et al. The kinetics and reproducibility of 18F-sodium fluoride for oncology using current PET camera technology. J Nucl Med. 2012;53:1175–84.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    ICRP. Radiation dose to patients from pharmaceuticals-addendum 3 to ICRP publication 53. ICRP publication 106. Ann ICRP. 2008;38:1–2.CrossRefPubMedGoogle Scholar
  37. 37.
    Walker RC, Smith GT, Liu E, Moore B, Clanton J, Stabin M. Measured human dosimetry of 68 Ga-DOTATATE. J Nucl Med. 2013;54:855–60.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Afshar-Oromieh A, Hetzheim H, Kratochwil C, Benesova M, Eder M, Neels OC, et al. The novel theranostic PSMA-ligand PSMA-617 in the diagnosis of prostate cancer by PET/CT: biodistribution in humans, radiation dosimetry and first evaluation of tumor lesions. J Nucl Med. 2015;56:1697–705.CrossRefPubMedGoogle Scholar
  39. 39.
    Herrmann K, Bluemel C, Weineisen M, Schottelius M, Wester H-J, Czernin J, et al. Biodistribution and radiation dosimetry for a probe targeting prostate-specific membrane antigen for imaging and therapy. J Nucl Med. 2015;56:855–61.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Japanese Society of Nuclear Medicine 2019

Authors and Affiliations

  • Ambreen Khawar
    • 1
    Email author
  • Elisabeth Eppard
    • 1
  • Frank Roesch
    • 2
  • Hojjat Ahmadzadehfar
    • 1
  • Stefan Kürpig
    • 1
  • Michael Meisenheimer
    • 1
  • Florian. C. Gaertner
    • 1
  • Markus Essler
    • 1
  • Ralph. A. Bundschuh
    • 1
  1. 1.Department of Nuclear MedicineUniversity Medical Center BonnBonnGermany
  2. 2.Institute of Nuclear ChemistryJohannes Gutenberg-University MainzMainzGermany

Personalised recommendations