Skip to main content
Log in

Predictive value of cardiac autonomic indexes and MIBG washout in ICD recipients with mild to moderate heart failure

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

We aimed at evaluating the combined use of heart rate variability (HRV), baroreflex sensitivity (BRS), and MIBG imaging in the risk stratification for sudden cardiac death (SCD) of patients with mild to moderate heart failure.

Methods

Twenty-five patients (17 male and 8 female, mean age 63 ± 5 years, mean LVEF 36 ± 3%) with a recently implanted defibrillator (ICD) and mild (NYHA I-II) heart failure due to either ischemic (n = 15) or dilated (n = 10) cardiomyopathy were studied. One week after ICD implantation they underwent (a) baroreflex sensitivity (BRS) evaluation to bolus phenylephrine by the Oxford method, (b) 24-h heart rate variability (HRV) assessment, and (c) MIBG imaging. The mean patient follow-up was 32 ± 10 months. Simple correlation and stepwise multiple regression analysis was performed to evaluate (a) if the number of sustained ventricular tachycardia (cycle length <330 ms) or fibrillation episodes per month is related to one or more of MIBG, BRS, and HRV indexes and (b) if MIBG % washout is related to HRV and/or BRS.

Results

The frequency of fast ventricular arrhythmic episodes (FVAE) demonstrated an inverse relation to BRS (p < 0.0001), rMSSD (p = 0.001), and pNN50 (p = 0.0034), while it was positively related to LF (p < 0.0001) and MIBG % washout (p = 0.001). BRS, LF, rMSSD, and MIBG washout were also independent predictors of FVAE. MIBG washout was related to only one HRV marker (SDNN-I, p < 0.0001), while no correlation was observed with BRS.

Conclusions

In ICD recipients with well-compensated heart failure, autonomic markers derived from BRS, HRV, and MIBG studies are related to FVAE. These markers have limited inter-dependency and constitute useful means for SCD risk stratification in this subgroup of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Olshansky B, Wood F, Hellkamp AS, Poole JE, Anderson J, Johnson GW, et al. Where patients with mild to moderate heart failure die: results from the Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT). Am Heart J. 2007;153:1089–94.

    Article  PubMed  Google Scholar 

  2. Eckardt L, Haverkamp W, Johna R, Böcker D, Deng MC, Breithardt G, et al. Arrhythmias in heart failure: current concepts of mechanisms and therapy. J Cardiovasc Electrophysiol. 2000;11:106–17.

    Article  PubMed  CAS  Google Scholar 

  3. La Rovere MT, Bigger JT, Marcus FI, Mortara A, Schwartz PJ, for the ATRAMI investigators. Baroreflex sensitivity and heart rate variability in prediction of total mortality after myocardial infarction. Lancet. 1998;351:478–84.

    Article  PubMed  CAS  Google Scholar 

  4. Kiviniemi AM, Tulppo MP, Wichterle D, Hautala AJ, Tiinanen S, Seppanen T, et al. Novel spectral indexes of heart rate variability as predictors of sudden and non-sudden cardiac death after an acute myocardial infarction. Ann Med. 2007;39:54–62.

    Article  PubMed  Google Scholar 

  5. De Ferrari GM, Sanzo A, Bertoletti A, Specchia G, Vanoli E, Schwartz PJ. Baroreflex sensitivity predicts long-term cardiovascular mortality after myocardial infarction even in patients with preserved left ventricular function. J Am Coll Cardiol. 2007;50:2285–90.

    Article  PubMed  Google Scholar 

  6. Mortara A, La Rovere MT, Pinna GD, et al. Arterial barorefrex modulation of heart rate in chronic heart failure. Clinical and hemodynamic correlates and prognostic implications. Circulation. 1997;96:3450–8.

    PubMed  CAS  Google Scholar 

  7. Sandercock GR, Brodie DA. The role of heart rate variability in prognosis for different modes of death in chronic heart failure. Pacing Clin Electrophysiol. 2006;29(8):892–904.

    Article  PubMed  Google Scholar 

  8. Guzzetti S, La Rovere MT, Pinna GD, Maestri R, Borroni E, Porta A, et al. Different spectral components of 24 h heart rate variability are related to different modes of death in chronic heart failure. Eur Heart J. 2005;26(4):357–62.

    Article  PubMed  Google Scholar 

  9. Carter JE Jr. Decreased heart rate variability in congestive heart failure. Am J Cardiol. 1992;69(3):286–7.

    Article  PubMed  Google Scholar 

  10. Hoffmann J, Grimm W, Menz V, Mxiller HH, Maisch B. Heart rate variability and baroreflex sensitivity in idiopathic dilated cardiomyopathy. Heart. 2000;83:531–6.

    Article  PubMed  CAS  Google Scholar 

  11. Murray DR. What is “heart rate variability” and is it blunted by tumor necrosis factor? Chest. 2003;123:664–7.

    Article  PubMed  Google Scholar 

  12. Verberne HJ, Brewster LM, Somsen GA, van Eck-Smit BL. Prognostic value of myocardial 1231-metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: a systematic review. Eur Heart J. 2008;29(9):1147–59.

    Article  PubMed  Google Scholar 

  13. Nakata T, Miyamoto K, Doi A, Sasao H, Wakabayashi T, Kobayashi H, et al. Cardiac death prediction and impaired cardiac sympathetic innervation assessed by MIBG in patients with failing and nonfailing hearts. J Nucl Cardiol. 1998;5:579–90.

    Article  PubMed  CAS  Google Scholar 

  14. Chen LS, Zhou S, Fishbein MC, Chen PS. New perspectives on the role of autonomic nervous system in the genesis of arrhythmias. J Cardiovasc Electrophysiol. 2007;18(1):123–7.

    Article  PubMed  Google Scholar 

  15. Verrier RL, Antzelevitch C. Autonomic aspects of arrhythmogenesis: the enduring and the new. Curr Opin Cardiol. 2004;19:2–11.

    Article  PubMed  Google Scholar 

  16. Zipes DP, Camm AJ, Borggrefe M, et al. ACC/AHA/ESC 2006 Guidelines for Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: a report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (writing committee to develop Guidelines for Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. J Am Coll Cardiol. 2006;48:247–346.

    Article  Google Scholar 

  17. Kawahara M. Evaluation of the accuracy of non-invasive automatic blood pressure monitors. Anesth Prog. 1990;37:244–7.

    PubMed  CAS  Google Scholar 

  18. Smyth HS, Sleight P, Pickering GW. Reflex regulation of arterial pressure during sleep in man: a quantitative method of assessing baroreflex sensitivity. Circ Res. 1969;24:109–21.

    PubMed  CAS  Google Scholar 

  19. Burr RL, Cowan MJ. Autoregressive spectral models of heart rate variability. Practical issues. J Electrocardiol. 1992;25:224–33.

    Article  PubMed  Google Scholar 

  20. Al-Khatib SM, Sanders GD, Carlson M, Cicic A, Curtis A, Fonarow GC, et al. Preventing tomorrow’s sudden cardiac death today: dissemination of effective therapies for sudden cardiac death prevention. Am Heart J. 2008;156:613–22.

    Article  PubMed  Google Scholar 

  21. Janse MJ. Electrophysiological changes in heart failure and their relationship to arrhythmogenesis. Cardiovasc Res. 2004;61:208–17.

    Article  PubMed  CAS  Google Scholar 

  22. Janse MJ, Vermeulen JT, Opthof T, Coronel R, Wilms-Schopman FJ, Rademaker HM, et al. Arrhythmogenesis in heart failure. J Cardiovasc Electrophysiol. 2001;12:496–9.

    Article  PubMed  CAS  Google Scholar 

  23. Gula LJ, Klein GJ, Hellkamp AS, Massel D, Krahn AD, Skanes AC, et al. Ejection fraction assessment and survival: an analysis of the Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT). Am Heart J. 2008;156:1196–200.

    Article  PubMed  Google Scholar 

  24. Pasotti M, Klersy C, Pilotto A, Marziliano N, Rapezzi C, Serio A, et al. Long-term outcome and risk stratification in dilated cardiomyopathies. J Am Coll Cardiol. 2008;52:1250–60.

    Article  PubMed  Google Scholar 

  25. Valencia JF, Vallverdu M, Cygankiewicz I, Voss A, Vazquez R, de Luna AB, et al. Multiscale regularity analysis of the heart rate variability: stratification of cardiac death risk. In: Conference Proceedings of the IEEE Engineering in Medicine and Biology Society 2007. pp. 5947–50.

  26. Buxton AE. Identifying the high risk patient with coronary artery disease—is ejection fraction all you need? J Cardiovasc Electrophysiol. 2005;16:S25–7.

    Article  PubMed  Google Scholar 

  27. La Rovere MT. Baroreflex sensitivity as a new marker for risk stratification. Ζ Kardiol. 2000;89:44–50.

    Google Scholar 

  28. Fauchier L, Babuty D, Cosnay P, Fauchier JP. Prognostic value of heart rate variability for sudden death and major arrhythmic events in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 1999;33:1203–7.

    Article  PubMed  CAS  Google Scholar 

  29. Grimm W, Christ M, Sharkova J, Maisch B. Arrhythmia risk prediction in idiopathic dilated cardiomyopathy based on heart rate variability and baroreflex sensitivity. Pacing Clin Electrophysiol. 2005;28:S202–6.

    Article  PubMed  Google Scholar 

  30. Calò L, Peichl P, Bulava A, Lamberti F, Loricchio ML, Castro A, et al. Risk stratification for arrhythmic events in patients with idiopathic dilated cardiomyopathy: a review of the literature and current perspectives. Ital Heart J. 2003;4:580–8.

    PubMed  Google Scholar 

  31. Hoffmann J, Grimm W, Menz V, Knop U, Maisch B. Heart rate variability and major arrhythmic events in patients with idiopathic dilated cardiomyopathy. Pacing Clin Electrophysiol. 1996;19:1841–4.

    Article  PubMed  CAS  Google Scholar 

  32. Rashba EJ, Estes NA, Wang P, Schaechter A, Howard A, Zareba W, et al. Preserved heart rate variability identifies low-risk patients with nonischemic dilated cardiomyopathy: results from the DEFINITE trial. Heart Rhythm. 2006;3:281–6.

    Article  PubMed  Google Scholar 

  33. Grimm W, Christ M, Bach J, Müller HH, Maisch B. Noninvasive arrhythmia risk stratification in idiopathic dilated cardiomyopathy: results of the Marburg Cardiomyopathy Study. Circulation. 2003;108:2883–91.

    Article  PubMed  Google Scholar 

  34. Calkins H, Allman K, Bolling S, Kirsch M, Wieland D, Morady F, et al. Correlation between scintigraphic evidence of regional sympathetic neuronal dysfunction and ventricular refractoriness in the human heart. Circulation. 1993;88:172–9.

    PubMed  CAS  Google Scholar 

  35. Meredith IT, Esler MD, Jennings GL, Broughton A. Evidence of a selective increase in cardiac sympathetic activity in patients with sustained ventricular arrhythmias. New Engl J Med. 1991;325:618–24.

    Article  PubMed  CAS  Google Scholar 

  36. Pomeranz B, Macauley RJ, Caudill MA, et al. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol. 1985;248:H151–3.

    PubMed  CAS  Google Scholar 

  37. Yamada T, Shimonagata T, Fukunami M, Kumagai K, Ogita H, Hirata A, et al. Comparison of the prognostic value of cardiac iodine-123 metaiodobenzylguanidine imaging and heart rate variability in patients with chronic heart failure: a prospective study. J Am Coll Cardiol. 2003;41:231–8.

    Article  PubMed  Google Scholar 

  38. Somsen GA, Szabo BM, van Veldhuisen DJ, de Milliano PAR, de Groot CA, Lie KI. Comparison between iodine 123-metaiodobenzylguanidine scintigraphy and heart rate variability for the assessment of cardiac sympathetic activity in mild to moderate heart failure. Am Heart J. 1997;134:456–8.

    Article  PubMed  CAS  Google Scholar 

  39. Kurata C, Shouda S, Mikami T, Wakabayashi Y, Nakano T, Sugiyama T, et al. Comparison of 123-metaiodobenzylguanidine kinetics with heart rate variability and plasma norepinephrine level. J Nucl Cardiol. 1997;4:515–23.

    Article  PubMed  CAS  Google Scholar 

  40. Vesalainen RK, Pietila M, Tahvanainen KUO, Jartti T, Teras M, Nagren K, et al. Cardiac positron emission tomography imaging with [11C]hydroxyephedrine, a specific tracer for sympathetic nerve endings, and its functional correlates in congestive heart failure. Am J Cardiol. 1999;84:568–74.

    Article  PubMed  CAS  Google Scholar 

  41. Agostini D, Verberne HJ, Burchert W, Knuuti J, Povinec P, Sambuceti G, et al. I-123-mIBG myocardial imaging for assessment of risk for a major cardiac event in heart failure patients: insights from a retrospective European multicenter study. Eur J Nucl Med Mol Imaging. 2008;35:535–46.

    Article  PubMed  Google Scholar 

  42. Bax JJ, Kraft O, Buxton AE, Fjeld JG, Parizek P, Agostini D, et al. 123I-mIBG Scintigraphy to predict inducibility of ventricular arrhythmias on cardiac electrophysiology testing: a prospective multicenter pilot study. Circ Cardiovasc Imaging. 2008;1:131–40.

    Article  PubMed  Google Scholar 

  43. Berisso MZ, Caruso D, Canonero D, Setti S, Domenicucci S. Prophylactic use of cardiac implantable defibrillators in patients with severe left ventricular dysfunction: how to deal with decision making among guidelines, clinical practice, ethical problems, and limited economic resources. G Ital Cardiol (Rome). 2008;9:338–54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Katsikis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koutelou, M., Katsikis, A., Flevari, P. et al. Predictive value of cardiac autonomic indexes and MIBG washout in ICD recipients with mild to moderate heart failure. Ann Nucl Med 23, 677–684 (2009). https://doi.org/10.1007/s12149-009-0289-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-009-0289-6

Keywords

Navigation