Advertisement

A probabilistic framework for weighted combination of multiple-feature classifications of hyperspectral images

  • Reza Seifi MajdarEmail author
  • Hassan Ghassemian
Research Article
  • 24 Downloads

Abstract

Spatial information such as texture and shape features as well as spatial contextual information play a key role in representation and analysis of hyperspectral images. Spatial information improves the classification accuracy and addresses the common problem of pixel-wise classification methods, i.e. limited training samples. In this article, a new combination of spectral, texture and shape features, as well as, contextual information in the probabilistic framework is proposed. The texture features are extracted utilizing Gabor filters and the shape features are represented by morphological profiles. The spectral, texture and shape features are separately fed into a probabilistic support vector machine classifier to estimate the per-pixel probability. These probabilities are combined together to calculate the total probability on which three weights determine the efficacy of each one. Finally, the classification result obtained in the previous step is refined by majority voting within the shape adaptive neighbourhood of each pixel. Instead of the simple majority vote we applied the majority vote in the probabilistic framework on which the reliability of the labels in the region is also considered. Experiments on three hyperspectral images: Indian Pines, Pavia University, and Salinas demonstrate the efficiency of the proposed method for the classification of hyperspectral images, especially with limited training samples. Moreover, after comparing with some recent spectral–spatial classification methods, the performance of the proposed method is demonstrated.

Keywords

Hyperspectral image Spectral-spatial classification Texture features Shape features Probabilistic SVM 

Notes

References

  1. Benediktsson JA, Ghamisi P (2015) Spectral-spatial classification of hyperspectral remote sensing images. Artech House Google Scholar
  2. Benediktsson JA, Palmason JA, Sveinsson JR (2005) Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans Geosci Remote Sens 43(3):480–491CrossRefGoogle Scholar
  3. Camps-Valls G, Bruzzone L (2005) Kernel-based methods for hyperspectral image classification. IEEE Trans Geosci Remote Sens 43(6):1351–1362CrossRefGoogle Scholar
  4. Camps-Valls G, Gomez-Chova L, Munoz-Mari J, Vila-Frances J, Calpe-Maravilla J (2006) Composite kernels for hyperspectral image classification. IEEE Geosci Remote Sens Lett 3(1):93–97CrossRefGoogle Scholar
  5. Camps-Valls G, Tuia D, Bruzzone L, Benediktsson JA (2014) Advances in hyperspectral image classification: earth monitoring with statistical learning methods. IEEE Signal Process Mag 31(1):45–54CrossRefGoogle Scholar
  6. Canty MJ (2014) Image analysis, classification, and change detection in remote sensing with algorithms for ENVI/IDL, 3rd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  7. Chang CC, Lin CJ (2011) LIBS SVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):1–27 (software available at: www.csie.ntu.edu.tw/~cjlin/libsvm)CrossRefGoogle Scholar
  8. Chen Y, Nasrabadi NM, Tran TD (2011) Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans Geosci Remote Sens 49:3973–3985CrossRefGoogle Scholar
  9. Cohen J (1960) A coefficient of agreement from nominal scales. Educ Psychol Meas 20: 37–46.  https://doi.org/10.1177/001316446002000104
  10. Dalla Mura M, Benediktsson JA, Waske B, Bruzzone L (2010) Extended profiles with morphological attribute filters for the analysis of hyperspectral data. Int J Remote Sens 31(22):5975–5991CrossRefGoogle Scholar
  11. Daugman J (1985) Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J Opt Soc Am A 2(7):1160–1169CrossRefGoogle Scholar
  12. Fang L, Li S, Kang X, Benediktsson JA (2014) Spectral–spatial hyperspectral image classification via multiscale adaptive sparse representation. IEEE Trans Geosci Remote Sens 52(12):7738–7749CrossRefGoogle Scholar
  13. Fang L, Li S, Duan W, Ren J, Benediktsson JA (2015) Classification of hyperspectral images by exploiting spectral–spatial information of superpixel via multiple kernels. IEEE Trans Geosci Remote Sens 53:6663–6674CrossRefGoogle Scholar
  14. Fang L, Wang C, Li S, Benediktsson JA (2017) Hyperspectral image classification via multiple-feature-based adaptive sparse representation. IEEE Trans Instrum Meas 66:1646–1657CrossRefGoogle Scholar
  15. Fang L, He N, Li S, Ghamisi P, Benediktsson JA (2018a) Extinction profiles fusion for hyperspectral images classification. IEEE Trans Geosci Remote Sens 56:1803–1815CrossRefGoogle Scholar
  16. Fang L, He N, Li S, Plaza AJ, Plaza J (2018b) A new spatial–spectral feature extraction method for hyperspectral images using local covariance matrix representation. IEEE Trans Geosci Remote Sens 56:3534–3546CrossRefGoogle Scholar
  17. Fang L, Liu G, Li S, Ghamisi P, Benediktsson JA (2018c) Hyperspectral image classification with squeeze multibias network IEEE Transactions on Geoscience and Remote Sensing 57:1291-1301Google Scholar
  18. Fauvel M, Tarabalka Y, Benediktsson JA, Chanussot J, Tilton JC (2013) Advances in spectral-spatial classification of hyperspectral images. Proc IEEE 101(3):652–675CrossRefGoogle Scholar
  19. Fu W, Li S, Fang L, Kang X, Benediktsson JA (2016) Hyperspectral image classification via shape-adaptive joint sparse representation. IEEE J Sel Top Appl Earth Obs Remote Sens 9:556–567CrossRefGoogle Scholar
  20. Ghamisi P, Souza R, Benediktsson JA, Rittner L, Lotufo R, Zhu XX (2016) Hyperspectral data classification using extended extinction profiles. IEEE Geosci Remote Sens Lett 13:1641–1645CrossRefGoogle Scholar
  21. Golipour M, Ghassemian H, Mirzapour F (2016) Integrating hierarchical segmentation maps with MRF prior for classification of hyperspectral images in a Bayesian framework. IEEE Trans Geosci Remote Sens 54:805–816CrossRefGoogle Scholar
  22. Guo X, Huang X, Zhang L (2014) Three-dimensional wavelet texture feature extraction and classification for multi/hyperspectral imagery. IEEE Geosci Remote Sens Lett 11:2183–2187CrossRefGoogle Scholar
  23. Huo L-Z, Tang P (2011) Spectral and spatial classification of hyperspectral data using SVMs and Gabor textures. In: 2011 IEEE International Geoscience and Remote Sensing Symposium pp 1708–1711Google Scholar
  24. Jia X, Kuo B-C, Crawford MM (2013) Feature mining for hyperspectral image classification. Proc IEEE 101:676–697CrossRefGoogle Scholar
  25. Kang X, Li S, Benediktsson JA (2014) Spectral–spatial hyperspectral image classification with edge-preserving filtering. IEEE Trans Geosci Remote Sens 52:2666–2677CrossRefGoogle Scholar
  26. Khodadadzadeh M, Li J, Plaza A, Ghassemian H, Bioucas-Dias JM, Li X (2014) Spectral–spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization. IEEE Trans Geosci Remote Sens 52:6298–6314CrossRefGoogle Scholar
  27. Kianisarkaleh A, Ghassemian H (2016) Nonparametric feature extraction for classification of hyperspectral images with limited training samples. ISPRS J Photogramm Remote Sens 119:64–78CrossRefGoogle Scholar
  28. Li G, Wan Y (2015) A new combination classification of pixel-and object-based methods. Int J Remote Sens 36:5842–5868CrossRefGoogle Scholar
  29. Li J, Bioucas-Dias JM, Plaza A (2011) Hyperspectral image segmentation using a new Bayesian approach with active learning. IEEE Trans Geosci Remote Sens 49(10):3947–3960CrossRefGoogle Scholar
  30. Li J, Marpu PR, Plaza A, Bioucas-Dias JM, Benediktsson JA (2013) Generalized composite kernel framework for hyperspectral image classification. IEEE Trans Geosci Remote Sens 51:4816–4829CrossRefGoogle Scholar
  31. Li J, Huang X, Gamba P, Bioucas-Dias JM, Zhang L, Benediktsson JA, Plaza A (2015) Multiple feature learning for hyperspectral image classification. IEEE Trans Geosci Remote Sens 53:1592–1606CrossRefGoogle Scholar
  32. Li S, Ni L, Jia X, Gao L, Zhang B, Peng M (2016) Multi-scale superpixel spectral–spatial classification of hyperspectral images. Int J Remote Sens 37:4905–4922CrossRefGoogle Scholar
  33. Liu J, Lu W (2016) A probabilistic framework for spectral–spatial classification of hyperspectral images. IEEE Trans Geosci Remote Sens 54:5375–5384CrossRefGoogle Scholar
  34. Matheron G (1975) Random sets and integral geometry. Wiley, New York Google Scholar
  35. Mirmehdi M (2008) Handbook of texture analysis. Imperial College PressGoogle Scholar
  36. Mirzapour F, Ghassemian H (2015) Improving hyperspectral image classification by combining spectral, texture, and shape features. Int J Remote Sens 36:1070–1096Google Scholar
  37. Negri RG, Dutra LV, Sant’Anna SJS (2014) An innovative support vector machine based method for contextual image classification. ISPRS J Photogramm Remote Sens 87:241–248CrossRefGoogle Scholar
  38. Seifi Majdar R, Ghassemian H (2017a) Spectral-Spatial classification of hyperspectral images using functional data analysis. Remote Sens Lett 8:488–497CrossRefGoogle Scholar
  39. Seifi Majdar R, Ghassemian H (2017b) A probabilistic SVM approach for hyperspectral image classification using spectral and texture features. Int J Remote Sens 38:4265–4284CrossRefGoogle Scholar
  40. Serra J (1983) Image analysis and mathematical morphology. Academic Press, Inc.Google Scholar
  41. Soille P (2013) Morphological image analysis: principles and applications. Springer Science & Business MediaGoogle Scholar
  42. Solberg AHS, Taxt T, Jain AK (1996) A Markov random field model for classification of multisource satellite imagery. IEEE Trans Geosci Remote Sens 34:100–113CrossRefGoogle Scholar
  43. Tarabalka Y, Fauvel M, Chanussot J, Benediktsson JA (2010a) SVM-and MRF-based method for accurate classification of hyperspectral images. IEEE Geosci Remote Sens Lett 7:736–740CrossRefGoogle Scholar
  44. Tarabalka Y, Chanussot J, Benediktsson JA (2010b) Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recogn 43:2367–2379CrossRefGoogle Scholar
  45. Vapnik VN (2000) The nature of statistical learning theory, 2nd edn. Springer-Verlag, New YorkCrossRefGoogle Scholar
  46. Wang Y, Duan H (2018) Classification of hyperspectral images by SVM using a composite kernel by employing spectral, spatial and hierarchical structure information. Remote Sens 10:441CrossRefGoogle Scholar
  47. Wang Y, Duan H (2019) Spectral–spatial classification of hyperspectral images by algebraic multigrid based multiscale information fusion. Int J Remote Sens 40:1301–1330CrossRefGoogle Scholar
  48. Wang L, Shi C, Diao C, Ji W, Yin D (2016a) A survey of methods incorporating spatial information in image classification and spectral unmixing. Int J Remote Sens 37:3870–3910CrossRefGoogle Scholar
  49. Wang Y, Song H, Zhang Y (2016b) Spectral-spatial classification of hyperspectral images using joint bilateral filter and graph cut based model. Remote Sens 8:748CrossRefGoogle Scholar
  50. Wu T-F, Lin C-J, Weng RC (2004) Probability estimates for multi-class classification by pairwise coupling. J Mach Learn Res 5:975–1005Google Scholar
  51. Zehtabian A, Ghassemian H (2015) An adaptive pixon extraction technique for multispectral/hyperspectral image classification. IEEE Geosci Remote Sens Lett 12:831–835CrossRefGoogle Scholar
  52. Zhang B, Li S, Jia X, Gao L, Peng M (2011) Adaptive Markov random field approach for classification of hyperspectral imagery. IEEE Geosci Remote Sens Lett 8:973–977CrossRefGoogle Scholar
  53. Zhang L, Zhang L, Tao D, Huang X (2012) On combining multiple features for hyperspectral remote sensing image classification. IEEE Trans Geosci Remote Sens 50:879–893CrossRefGoogle Scholar
  54. Zhang H, Li J, Huang Y, Zhang L (2014) A nonlocal weighted joint sparse representation classification method for hyperspectral imagery. IEEE J Sel Top Appl Earth Obs Remote Sens 7:2056–2206CrossRefGoogle Scholar
  55. Zhu J, Fang L, Ghamisi P (2018) Deformable convolutional neural networks for hyperspectral image classification. IEEE Geosci Remote Sens Lett 15:1254–1258CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringArdabil Branch, Islamic Azad UniversityArdabilIran
  2. 2.Image Processing and Information Analysis Lab, Faculty of Computer and Electrical EngineeringTarbiat Modares UniversityTehranIran

Personalised recommendations