Advertisement

Earth Science Informatics

, Volume 12, Issue 4, pp 671–684 | Cite as

A web-based platform for terrestrial data repository from Chicken Creek catchment

  • Davood MoghadasEmail author
  • Wolfgang Schaaf
  • Werner Gerwin
  • Annika Badorreck
  • Reinhard F. Hüttl
Software Article
  • 120 Downloads

Abstract

Exploring hydrological and ecological processes plays a key role in understanding ecosystem developments. In this respect, the constructed catchment, Chicken Creek, has been established for fundamental and interdisciplinary scientific research. Since 2005, an ongoing monitoring program has been launched to measure hydrological, biological, meteorological, and pedological parameters during the ecological development of the site. This comprehensive and multidisciplinary monitoring program has produced a diverse large data set. Handling such complex data for research purposes can be a cumbersome task. Consequently, we developed an online data portal (https://www.b-tu.de/chicken-creek/apps/datenportal/) to efficiently handle the data from Chicken Creek catchment. The portal was constructed using Shiny package of the R programming language. This platform provides a web-based data repository allowing for data discovery, download, visualization, and analysis. The data include time series of different parameters from installed sensors, data from laboratory analyses, vegetation data, data from sampling campaigns, and aerial photos. This platform demonstrates the relevancy and potentiality of the R-Shiny for constructing an online data portal to be used for multidisciplinary scientific purposes. The Chicken Creek data portal thus provides a comprehensive and reliable database to give scientists a fast and easy access to all collected data.

Keywords

Data management Web portal Observation data Monitoring R-Shiny Ecosystem developments 

Notes

Acknowledgments

The Chicken Creek observatory is supported by BTU Cottbus - Senftenberg as well as by the Brandenburg Ministry of Science and Research. Results were obtained in the framework of the Transregional Collaborative Research Centre (CRC/TR) 38 “Structures and Processes of the Initial Ecosystem Development Phase in an Artificial Catchment” which was funded by the Deutsche Forschungsgemeinschaft (DFG). The artificial catchment Chicken Creek was constructed with the technical and financial support provided by Vattenfall Europe Mining AG. We thank all technical staff for their help with the field work, sample analyses as well as data processing.

References

  1. Ames DP, Horsburgh JS, Cao Y, Kadlec J, Whiteaker T, Valentine D (2012) Hydrodesktop: web services-based software for hydrologic data discovery, download, visualization, and analysis. Environ Model Softw 37:146–156.  https://doi.org/10.1016/j.envsoft.2012.03.013 CrossRefGoogle Scholar
  2. Andre F, van Leeuwen C, Saussez S, Van Durmen R, Bogaert P, Moghadas D, de Resseguier L, Delvaux B, Vereecken H, Lambot S (2012) High-resolution imaging of a vineyard in south of France using ground-penetrating radar, electromagnetic induction and electrical resistivity tomography. J Appl Geophys 78:113–122.  https://doi.org/10.1016/j.jappgeo.2011.08.002 CrossRefGoogle Scholar
  3. Bogena H, Borg E, Brauer A, Dietrich P, Hajnsek I, Heinrich I, Kiese R, Kunkel R, Kunstmann H, Merz B, Priesack E, Puetz T, Schmid HP, Wollschlaeger U, Vereecken H, Zacharias S (2016) TERENO: German network of terrestrial environmental observatories. J Large Scale Res Fac 2:A52.  https://doi.org/10.17815/jlsrf-2-98 CrossRefGoogle Scholar
  4. Brantley SL, McDowell WH, Dietrich WE, White TS, Kumar P, Anderson SP, Chorover J, Lohse KA, Bales RC, Richter DD, Grant G, Gaillardet J (2017) Designing a network of critical zone observatories to explore the living skin of the terrestrial earth. Earth Surf Dyn 5(4):841–860.  https://doi.org/10.5194/esurf-5-841-2017 CrossRefGoogle Scholar
  5. Chang W, Cheng J, Allaire JJ, Xie Y, McPherson J (2018) shiny: web application framework for R. R package version 1,1,0, https://www.CRANR-projectorg/package=shiny
  6. Elmer M, Gerwin W, Schaaf W, Zaplata MK, Hohberg K, Nenov R, Bens O, Huttl RF (2013) Dynamics of initial ecosystem development at the artificial catchment chicken creek, Lusatia, Germany. Environ Earth Sci 69(2):491–505.  https://doi.org/10.1007/s12665-013-2330-2 CrossRefGoogle Scholar
  7. Falgreen S, Bilgrau AE, Brondum RF, Jakobsen LH, Have J, Nielsen KL, El-Galaly TC, Bodker JS, Schmitz A, Young KH, Johnsen HE, Dybkaer K, Bogsted M (2016) hemaclass.org: online one-by-one microarray normalization and classification of hematological cancers for precision medicine. Plos One 11 (10):20.  https://doi.org/10.1371/journal.pone.0163711 CrossRefGoogle Scholar
  8. Gerke HH, Maurer T, Schneider A (2013) A three-dimensional structure and process model for integrated hydro-geo-pedologic analysis of a constructed hydrological catchment. Vadose Zone J 12(4):17.  https://doi.org/10.2136/vzj2013.02.0040 CrossRefGoogle Scholar
  9. Gerwin W, Schaaf W, Biemelt D, Fischer A, Winter S, Huttl RF (2009) The artificial catchment “chicken creek” (Lusatia, Germany)-a landscape laboratory for interdisciplinary studies of initial ecosystem development. Ecol Eng 35(12):1786–1796.  https://doi.org/10.1016/j.ecoleng.2009.09.003 CrossRefGoogle Scholar
  10. Hampton SE, Parker JN (2011) Collaboration and productivity in scientific synthesis. Bioscience 61 (11):900–910.  https://doi.org/10.1525/bio.2011.61.11.9 CrossRefGoogle Scholar
  11. Hollander HM, Blume T, Bormann H, Buytaert W, Chirico GB, Exbrayat JF, Gustafsson D, Holzel H, Kraft P, Stamm C, Stoll S, Bloschl G, Fluhler H (2009) Comparative predictions of discharge from an artificial catchment (chicken creek) using sparse data. Hydrol Earth Syst Sci 13(11):2069–2094.  https://doi.org/10.5194/hess-13-2069-2009 CrossRefGoogle Scholar
  12. Huang J, Buchanan SM, Bishop TFA, Triantafilis J (2017) terragis - a web gis for delivery of digital soil maps in cotton-growing areas of Australia. Soil Use Manag 33(4):568–582.  https://doi.org/10.1111/sum.12383 CrossRefGoogle Scholar
  13. Huttl RF, Gerwin W, Schaaf W, Zaplata MK, Hinz C (2014) A critical zone observatory for detecting ecosystem transition: the constructed catchment Chicken Creek (Germany) Procedia Earth and Planetary Science, vol 10. Elsevier Science Bv, Amsterdam, pp 46–51Google Scholar
  14. Jadoon KZ, Altaf MU, McCabe MF, Hoteit I, Muhammad N, Moghadas D, Weihermuller L (2017) Inferring soil salinity in a drip irrigation system from multi-configuration EMI measurements using adaptive Markov chain Monte Carlo. Hydrol Earth Syst Sci 21(10):5375–5383.  https://doi.org/10.5194/hess-21-5375-2017 CrossRefGoogle Scholar
  15. Kunkel R, Sorg J, Eckardt R, Kolditz O, Rink K, Vereecken H (2013) TEODOOR: a distributed geodata infrastructure for terrestrial observation data. Environ Earth Sci 69(2):507–521.  https://doi.org/10.1007/s12665-013-2370-7 CrossRefGoogle Scholar
  16. Margreitter C, Lu HC, Townsend C, Stewart A, Dunn-Walters DK, Fraternali F (2018) Brepertoire: a user-friendly web server for analysing antibody repertoire data. Nucleic Acids Res 46(W1):W264–W270.  https://doi.org/10.1093/nar/gky276 CrossRefGoogle Scholar
  17. Maurer T, Schneider A, Gerke HH (2011) A structure generator for modelling the initial sediment distribution of an artificial hydrologic catchment. Hydrol Earth Syst Sci 15(12):3617–3638.  https://doi.org/10.5194/hess-15-3617-2011 CrossRefGoogle Scholar
  18. Mazur K, Schoenheinz D, Biemelt D, Schaaf W, Grunewald U (2011) Observation of hydrological processes and structures in the artificial chicken creek catchment. Phys Chem Earth 36(1-4):74–86.  https://doi.org/10.1016/j.pce.2010.10.001 CrossRefGoogle Scholar
  19. Moghadas D, Badorreck A (2019) Machine learning to estimate soil moisture from geophysical measurements of electrical conductivity. Near Surf Geophys 17(2):181–195.  https://doi.org/10.1002/nsg.12036 CrossRefGoogle Scholar
  20. Moghadas D, Jadoon KZ, Vanderborght J, Lambot S, Vereecken H (2014) Estimation of the near surface soil water content during evaporation using air-launched ground-penetrating radar. Near Surf Geophys 12:5.  https://doi.org/10.3997/1873-0604.2014017 CrossRefGoogle Scholar
  21. Moghadas D, Jadoon KZ, McCabe MF (2017) Spatiotemporal monitoring of soil water content profiles in an irrigated field using probabilistic inversion of time-lapse EMI data. Adv Water Resour 110:238–248.  https://doi.org/10.1016/j.advwatres.2017.10.019 CrossRefGoogle Scholar
  22. Neal C, Reynolds B, Neal M, Hill L, Wickham H, Pugh B (2003) Nitrogen in rainfall, cloud water, throughfall, stemflow, stream water and groundwater for the plynlimon catchments of mid-wales. Sci Total Environ 314:121–151.  https://doi.org/10.1016/s0048-9697(03)00100-1 CrossRefGoogle Scholar
  23. R-Core-Team (2018) R: a language and environment for statistical computing. R foundation for statistical computing. Vienna, Austria. https://www.R-projectorg/ Google Scholar
  24. Schaaf W, Bens O, Fischer A, Gerke HH, Gerwin W, Grunewald U, Hollander HM, Kogel-Knabner I, Mutz M, Schloter M, Schulin R, Veste M, Winter S, Huttl RF (2011) Patterns and processes of initial terrestrial-ecosystem development. J Plant Nutr Soil Sci 174(2):229–239.  https://doi.org/10.1002/jpln.201000158 CrossRefGoogle Scholar
  25. Schaaf W, Pohle I, Maurer T, Gerwin W, Hinz C, Badorreck A (2017) Water balance dynamics during ten years of ecological development at chicken creek catchment. Vadose Zone J 16:11.  https://doi.org/10.2136/vzj2017.04.0074 CrossRefGoogle Scholar
  26. Schumacher M, Conil S, Levula J, Plass Dulmer C, Lindauer M, Laurent O, Peltola O (2018) ICOS atmospheric greenhouse gas mole fractions of CO2, CO and CH4, 14CO2 and meteorological observations 2016-2018, final quality controlled level 2 data (version 0.2). ICOS ERIC  https://doi.org/10.18160/rhkc-vp22
  27. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten JW, Santos LBD, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo CT, Finkers R, Gonzalez-Beltran A, Gray AJG, Groth P, Goble C, Grethe JS, Heringa J, t Hoen PAC, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ, Martone ME, Mons A, Packer AL, Persson B, Rocca-Serra P, Roos M, van Schaik R, Sansone SA, Schultes E, Sengstag T, Slater T, Strawn G, Swertz MA, Thompson M, van der Lei J, van Mulligen E, Velterop J, Waagmeester A, Wittenburg P, Wolstencroft K, Zhao J, Mons B (2016) Comment: the FAIR guiding principles for scientific data management and stewardship. Scientific Data 3:9.  https://doi.org/10.1038/sdata.2016.18 CrossRefGoogle Scholar
  28. Yao RJ, Yang JS (2010) Quantitative evaluation of soil salinity and its spatial distribution using electromagnetic induction method. Agric Water Manag 97(12):1961–1970.  https://doi.org/10.1016/j.agwat.2010.02.001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Center Landscape Development and Mining LandscapesBrandenburg University of TechnologyCottbusGermany
  2. 2.Chair for Soil Protection and RecultivationBrandenburg University of TechnologyCottbusGermany
  3. 3.German Research Centre of Geosciences Potsdam (GFZ)TelegrafenbergPotsdamGermany

Personalised recommendations