Advertisement

Volumetric evidence of the mediating role of mental imagery in episodic memory effect on divergent thinking

  • Lijie Zhang
  • Lei Qiao
  • Xianwei Che
  • Mengsi Xu
  • Qunlin Chen
  • Wenjing Yang
  • Jiang QiuEmail author
  • Dong YangEmail author
Article
  • 25 Downloads

Abstract

Functional imaging studies have indicated that divergent thinking involves the cooperation between episodic memory and mental imagery. Moreover, divergent thinking was also demonstrated to rely on inhibition to suppress inappropriate information. Here, a mediation analysis was used to investigate the comprehensive associations between volumetric differences in regions of inhibition, episodic memory, and mental imagery, and performance differences in divergent thinking in 125 healthy individuals. Regions of interest were selected using the Neurosynth meta-analytical database. We found that volumetric differences in the left calcarine (a region involved in mental imagery) mediated the association between volumetric differences in the left parahippocampal (a region involved in episodic memory) and task performance in divergent thinking. Further analysis showed that volumetric differences in the right insula/supramarginal regions (regions involved in inhibition) were associated with divergent thinking through their impact on the volumetric differences in the left parahippocampal and left calcarine. Our results provided volumetric evidence of the mediating role of mental imagery in episodic memory effect on divergent thinking, as well as the promotion of inhibition in these relationships.

Keywords

Divergent thinking Episodic memory Mental imagery Inhibition 

Notes

Author Contributions

L.Z., L.Q., Q.C., W.Y., J.Q., and D. Y. designed the experiments and analysed the data. L. Z. drafted the manuscript, and L.Z., L.Q., W.C., Q.C., and M.X. provided critical revisions. L. Q. prepared the figures.

Funding

This work was supported by the National Natural Science Foundation of China (71472156;31271087;31571137), the National Outstanding young people plan, the Program for the Top Young Talents by Chongqing, the Fundamental Research Funds for the Central Universities (SWU1509383), and the Natural Science Foundation of Chongqing (cstc2015jcyjA10106).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in our studies which involved human participants were in accordance with the ethical standards of the institution and/or the national research committee. All procedures were also in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individuals who participated in the study.

References

  1. Addis, D. R., Wong, A. T., & Schacter, D. L. (2007). Remembering the past and imagining the future: Common and distinct neural substrates during event construction and elaboration. Neuropsychologia, 45(7), 1363–1377.  https://doi.org/10.1016/j.neuropsychologia.2006.10.016.CrossRefPubMedGoogle Scholar
  2. Addis, D. R., Pan, L., Musicaro, R., & Schacter, D. L. (2016). Divergent thinking and constructing episodic simulations. Memory, 24(1), 89–97.  https://doi.org/10.1080/09658211.2014.985591.CrossRefPubMedGoogle Scholar
  3. Amabile, T. M., Goldfarb, P., & Brackfleld, S. C. (1990). Social influences on creativity: Evaluation, coaction, and surveillance. Creativity Research Journal, 3(1), 6–21.CrossRefGoogle Scholar
  4. Aminoff, E. M., Kveraga, K., & Bar, M. (2013). The role of the parahippocampal cortex in cognition. Trends in Cognitive Sciences, 17(8), 379–390.CrossRefGoogle Scholar
  5. Anderson, R. E., & Helstrup, T. (1993). Visual discovery in mind and on paper. Memory & Cognition, 21(3), 283–293.CrossRefGoogle Scholar
  6. Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8(4), 170–177.CrossRefGoogle Scholar
  7. Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2014). Inhibition and the right inferior frontal cortex: One decade on. Trends in Cognitive Sciences, 18(4), 177–185.CrossRefGoogle Scholar
  8. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage, 38(1), 95–113.  https://doi.org/10.1016/j.neuroimage.2007.07.007.CrossRefPubMedGoogle Scholar
  9. Bamiou, D. E., Musiek, F. E., & Luxon, L. M. (2003). The insula (island of Reil) and its role in auditory processing: Literature review. Brain Research Brain Research Reviews, 42(2), 143–154.Google Scholar
  10. Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., . . . Neubauer, A. C. (2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64, 92–98.  https://doi.org/10.1016/j.neuropsychologia.2014.09.019.
  11. Belardinelli, M. O., Palmiero, M., Sestieri, C., Nardo, D., Di Matteo, R., Londei, A., . . . Romani, G. L. (2009). An fMRI investigation on image generation in different sensory modalities: The influence of vividness. Acta Psychologica, 132(2), 190–200.Google Scholar
  12. Benedek, M., Könen, T., & Neubauer, A. C. (2012). Associative abilities underlying creativity. Psychology of Aesthetics, Creativity, and the Arts, 6(3), 273.CrossRefGoogle Scholar
  13. Benedek, M., Beaty, R., Jauk, E., Koschutnig, K., Fink, A., Silvia, P. J., . . . Neubauer, A. C. (2014). Creating metaphors: The neural basis of figurative language production. Neuroimage, 90, 99–106.  https://doi.org/10.1016/j.neuroimage.2013.12.046.
  14. Benedek, M., Schües, T., Beaty, R. E., Jauk, E., Koschutnig, K., Fink, A., & Neubauer, A. C. (2017). To create or to recall original ideas: Brain processes associated with the imagination of novel object uses. Cortex.Google Scholar
  15. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57(1), 289–300.Google Scholar
  16. Bernhardt, B. C., Chen, Z., He, Y., Evans, A. C., & Bernasconi, N. (2011). Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy. Cerebral Cortex, 21(9), 2147–2157.CrossRefGoogle Scholar
  17. Boccia, M., Piccardi, L., Palermo, L., Nemmi, F., Sulpizio, V., Galati, G., & Guariglia, C. (2015). A penny for your thoughts! Patterns of fMRI activity reveal the content and the spatial topography of visual mental images. Human Brain Mapping, 36(3), 945–958.CrossRefGoogle Scholar
  18. Bristol, A. S., & Viscontas, I. V. (2006). Dynamic processes within associative memory stores: Piecing together the neural basis of creative cognition. Paper presented at the Creativity and reason in cognitive development.Google Scholar
  19. Cabeza, R., Locantore, J. K., & Anderson, N. D. (2003). Lateralization of prefrontal activity during episodic memory retrieval: Evidence for the production-monitoring hypothesis. Journal of Cognitive Neuroscience, 15(2), 249–259.CrossRefGoogle Scholar
  20. Carson, S. H., Peterson, J. B., & Higgins, D. M. (2003). Decreased latent inhibition is associated with increased creative achievement in high-functioning individuals. Journal of Personality and Social Psychology, 85(3), 499.CrossRefGoogle Scholar
  21. Cassotti, M., Agogué, M., Camarda, A., Houdé, O., & Borst, G. (2016a). Inhibitory control as a core process of creative problem solving and idea generation from childhood to adulthood. New Directions for Child and Adolescent Development, 2016(151), 61–72.CrossRefGoogle Scholar
  22. Cassotti, M., Camarda, A., Poirel, N., Houdé, O., & Agogué, M. (2016b). Fixation effect in creative ideas generation: Opposite impacts of example in children and adults. Thinking Skills and Creativity, 19, 146–152.CrossRefGoogle Scholar
  23. Chrysikou, E. G., Hamilton, R. H., Coslett, H. B., Datta, A., Bikson, M., & Thompson-Schill, S. L. (2013). Noninvasive transcranial direct current stimulation over the left prefrontal cortex facilitates cognitive flexibility in tool use. Cognitive Neuroscience, 4(2), 81–89.CrossRefGoogle Scholar
  24. Colom, R., Jung, R. E., & Haier, R. J. (2006). Distributed brain sites for the g-factor of intelligence. Neuroimage, 31(3), 1359–1365.CrossRefGoogle Scholar
  25. Cramond, B., Matthews-Morgan, J., Bandalos, D., & Zuo, L. (2005). A report on the 40-year follow-up of the torrance tests of creative thinking: Alive and well in the new millennium. The Gifted Child Quarterly, 49(4), 283–291.CrossRefGoogle Scholar
  26. De Neys, W., Rossi, S., & Houdé, O. (2013). Bats, balls, and substitution sensitivity: Cognitive misers are no happy fools. Psychonomic Bulletin & Review, 20(2), 269–273.CrossRefGoogle Scholar
  27. Duff, M. C., Kurczek, J., Rubin, R., Cohen, N. J., & Tranel, D. (2013). Hippocampal amnesia disrupts creative thinking. Hippocampus, 23(12), 1143–1149.  https://doi.org/10.1002/hipo.22208.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Düzel, E., Habib, R., Rotte, M., Guderian, S., Tulving, E., & Heinze, H. J. (2003). Human hippocampal and parahippocampal activity during visual associative recognition memory for spatial and nonspatial stimulus configurations. Journal of Neuroscience, 23(28), 9439–9444.CrossRefGoogle Scholar
  29. Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. Neuroimage, 59(2), 1783–1794.  https://doi.org/10.1016/j.neuroimage.2011.08.008.CrossRefPubMedGoogle Scholar
  30. Eysenck, H. J. (1995). Genius: The natural history of creativity (Vol. 12): Cambridge University Press.Google Scholar
  31. Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., . . . Neubauer, A. C. (2009). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and FMRI. Human Brain Mapping, 30(3), 734–748.  https://doi.org/10.1002/hbm.20538.
  32. Fink, A., Koschutnig, K., Hutterer, L., Steiner, E., Benedek, M., Weber, B., . . . Weiss, E. M. (2014). Gray matter density in relation to different facets of verbal creativity. Brain Structure & Function, 219(4), 1263–1269.  https://doi.org/10.1007/s00429-013-0564-0.
  33. Fink, A., Benedek, M., Koschutnig, K., Pirker, E., Berger, E., Meister, S., . . . Weiss, E. M. (2015). Training of verbal creativity modulates brain activity in regions associated with language- and memory-related demands. Human Brain Mapping, 36(10), 4104–4115.  https://doi.org/10.1002/hbm.22901.
  34. Fleck, M. S., Daselaar, S. M., Dobbins, I. G., & Cabeza, R. (2006). Role of prefrontal and anterior cingulate regions in decision-making processes shared by memory and nonmemory tasks. Cerebral Cortex, 16(11), 1623–1630.CrossRefGoogle Scholar
  35. Forthmann, B., Gerwig, A., Holling, H., Çelik, P., Storme, M., & Lubart, T. (2016). The be-creative effect in divergent thinking: The interplay of instruction and object frequency. Intelligence, 57, 25–32.  https://doi.org/10.1016/j.intell.2016.03.005.CrossRefGoogle Scholar
  36. Gasquoine, P. G. J. N. r. (2014). Contributions of the insula to cognition and emotion. 24(2), 77–87.Google Scholar
  37. Gilaiedotan, S., Tymula, A., Cooper, N., Kable, J. W., Glimcher, P. W., & Levy, I. (2014). Neuroanatomy predicts individual risk attitudes. Journal of Neuroscience, 34(37), 12394–12401.CrossRefGoogle Scholar
  38. Gilhooly, K. J., Fioratou, E., Anthony, S. H., & Wynn, V. (2007). Divergent thinking: Strategies and executive involvement in generating novel uses for familiar objects. British Journal of Psychology, 98(Pt 4), 611–625.  https://doi.org/10.1348/096317907X173421.CrossRefPubMedGoogle Scholar
  39. Good, C., Johnsrude, I., Ashburner, J., Henson, R., Fristen, K., & Frackowiak, R. (2002). A voxel-based morphometric study of ageing in 465 normal adult human brains. Paper presented at the Neuroimage.CrossRefGoogle Scholar
  40. Guildford, J. (1987). Creativity research: Past, present and future. Frontiers of creativity research: Beyond the basic. Buffalo: Bearly.Google Scholar
  41. He, Y., Chen, Z. J., & Evans, A. C. (2007). Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cerebral Cortex, 17(10), 2407–2419.CrossRefGoogle Scholar
  42. Healey, D., & Rucklidge, J. J. (2006). An investigation into the relationship among ADHD symptomatology, creativity, and neuropsychological functioning in children. Child Neuropsychology, 12(6), 421–438.CrossRefGoogle Scholar
  43. Hosseini, S. M., Hoeft, F., & Kesler, S. R. (2012). GAT: A graph-theoretical analysis toolbox for analyzing between-group differences in large-scale structural and functional brain networks. PLoS One, 7(7), e40709.CrossRefGoogle Scholar
  44. Houdé, O., Rossi, S., Lubin, A., & Joliot, M. (2010). Mapping numerical processing, reading, and executive functions in the developing brain: An fMRI meta-analysis of 52 studies including 842 children. Developmental Science, 13(6), 876–885.CrossRefGoogle Scholar
  45. Hubel, D. H., & Livingstone, M. S. (1987). Segregation of form, color, and stereopsis in primate area 18. The Journal of Neuroscience, 7(11), 3378–3415.CrossRefGoogle Scholar
  46. Jauk, E., Benedek, M., & Neubauer, A. C. (2014). The road to creative achievement: A latent variable model of ability and personality predictors. European Journal of Personality, 28(1), 95–105.  https://doi.org/10.1002/per.1941.CrossRefPubMedGoogle Scholar
  47. Jauk, E., Neubauer, A. C., Dunst, B., Fink, A., & Benedek, M. (2015). Gray matter correlates of creative potential: A latent variable voxel-based morphometry study. Neuroimage, 111, 312–320.  https://doi.org/10.1016/j.neuroimage.2015.02.002.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kanai, R., Dong, M. Y., Bahrami, B., & Rees, G. (2011). Distractibility in daily life is reflected in the structure and function of human parietal cortex. The Journal of Neuroscience, 31(18), 6620–6626.  https://doi.org/10.1523/JNEUROSCI.5864-10.2011.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Keri, S. (2009). Genes for psychosis and creativity: A promoter polymorphism of the neuregulin 1 gene is related to creativity in people with high intellectual achievement. Psychological Science, 20(9), 1070–1073.  https://doi.org/10.1111/j.1467-9280.2009.02398.x.CrossRefPubMedGoogle Scholar
  50. Kleibeuker, S. W., Koolschijn, P. C., Jolles, D. D., Schel, M. A., De Dreu, C. K., & Crone, E. A. (2013). Prefrontal cortex involvement in creative problem solving in middle adolescence and adulthood. Developmental Cognitive Neuroscience, 5, 197–206.  https://doi.org/10.1016/j.dcn.2013.03.003.CrossRefPubMedGoogle Scholar
  51. Krumm, G., Aranguren, M., Arán Filippetti, V., & Lemos, V. (2014a). Factor structure of the torrance tests of creative thinking verbal form B in a spanish-speaking population. Journal of Creative Behaviour.Google Scholar
  52. Krumm, G., Lemos, V., & Filippetti, V. A. (2014b). Factor structure of the torrance tests of creative thinking figural form B in spanish-speaking children: Measurement invariance across gender. Creativity Research Journal, 26(1), 72–81.CrossRefGoogle Scholar
  53. Kveraga, K., Ghuman, A. S., Kassam, K. S., Aminoff, E. A., Hämäläinen, M. S., Chaumon, M., & Bar, M. (2011). Early onset of neural synchronization in the contextual associations network. Proceedings of the National Academy of Sciences, 108(8), 3389–3394.CrossRefGoogle Scholar
  54. Laird, A. R., Eickhoff, S. B., Kurth, F., Fox, P. M., Uecker, A. M., Turner, J. A., . . . Fox, P. T. (2009). ALE meta-analysis workflows via the brainmap database: Progress towards a probabilistic functional brain atlas. Frontiers in Neuroinformatics, 3(3), 23.Google Scholar
  55. LeBoutillier, N., & Marks, D. F. (2003). Mental imagery and creativity: A meta-analytic review study. British Journal of Psychology, 94(Pt 1), 29–44.  https://doi.org/10.1348/000712603762842084.CrossRefPubMedGoogle Scholar
  56. Li, H., Li, W., Wei, D., Chen, Q., Jackson, T., Zhang, Q., & Qiu, J. (2014). Examining brain structures associated with perceived stress in a large sample of young adults via voxel-based morphometry. Neuroimage, 92, 1–7.  https://doi.org/10.1016/j.neuroimage.2014.01.044.CrossRefPubMedGoogle Scholar
  57. Limb, C. J., & Braun, A. R. (2008). Neural substrates of spontaneous musical performance: An FMRI study of jazz improvisation. PLoS One, 3(2), e1679.  https://doi.org/10.1371/journal.pone.0001679.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Madore, K. P., Addis, D. R., & Schacter, D. L. (2015). Creativity and memory effects of an episodic-specificity induction on divergent thinking. Psychological Science, 26(9), 1461–1468.CrossRefGoogle Scholar
  59. Madore, K. P., Jing, H. G., & Schacter, D. L. (2016). Divergent creative thinking in young and older adults: Extending the effects of an episodic specificity induction. Memory & Cognition, 1–15.Google Scholar
  60. Malouin, F., Richards, C. L., Jackson, P. L., Dumas, F., & Doyon, J. (2003). Brain activations during motor imagery of locomotor-related tasks: A PET study. Human Brain Mapping, 19(1), 47–62.CrossRefGoogle Scholar
  61. Martindale, C. (1999). Biological bases of creativity. Handbook of creativity, 137.Google Scholar
  62. Mayseless, N., Eran, A., & Shamay-Tsoory, S. G. (2015). Generating original ideas: The neural underpinning of originality. Neuroimage, 116, 232–239.  https://doi.org/10.1016/j.neuroimage.2015.05.030.CrossRefPubMedGoogle Scholar
  63. Mcgrew, K. S. (2005). The cattell-horn-carroll theory of cognitive abilities: Past, present, and future. Contemporary intellectual assessment: Theories, tests, and issues (2nd ed.Google Scholar
  64. Mednick, M. T., Mednick, S. A., & Jung, C. C. (1964). Continual association as a function of level of creativity and type of verbal stimulus. The Journal of Abnormal and Social Psychology, 69(5), 511.CrossRefGoogle Scholar
  65. Montag, C., Reuter, M., Jurkiewicz, M., Markett, S., & Panksepp, J. (2013). Imaging the structure of the human anxious brain: A review of findings from neuroscientific personality psychology. Reviews in the Neurosciences, 24(2), 167–190.CrossRefGoogle Scholar
  66. Morgan, C. J., Rothwell, E., Atkinson, H., Mason, O., & Curran, H. V. (2010). Hyper-priming in cannabis users: A naturalistic study of the effects of cannabis on semantic memory function. Psychiatry Research, 176(2–3), 213–218.  https://doi.org/10.1016/j.psychres.2008.09.002.CrossRefPubMedGoogle Scholar
  67. Nelson, D. L., & Mcevoy, C. L. (2000). What is this thing called frequency? Memory & Cognition, 28(4), 509.CrossRefGoogle Scholar
  68. Nusbaum, E. C., Silvia, P. J., & Beaty, R. E. (2014). Ready, set, create: What instructing people to “be creative” reveals about the meaning and mechanisms of divergent thinking. Psychology of Aesthetics, Creativity, and the Arts, 8(4), 423–432.  https://doi.org/10.1037/a0036549.CrossRefGoogle Scholar
  69. Okuda, J., Fujii, T., Ohtake, H., Tsukiura, T., Tanji, K., Suzuki, K., . . . Yamadori, A. (2003). Thinking of the future and past: The roles of the frontal pole and the medial temporal lobes. Neuroimage, 19(4), 1369–1380.Google Scholar
  70. Paivio, A. (1969). Mental imagery in associative learning and memory. Psychological Review, 76(3), 241.CrossRefGoogle Scholar
  71. Pinho, A. L., de Manzano, O., Fransson, P., Eriksson, H., & Ullen, F. (2014). Connecting to create: Expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas. The Journal of Neuroscience, 34(18), 6156–6163.  https://doi.org/10.1523/JNEUROSCI.4769-13.2014.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36(4), 717–731.CrossRefGoogle Scholar
  73. Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879–891.CrossRefGoogle Scholar
  74. Radel, R., Davranche, K., Fournier, M., & Dietrich, A. (2015). The role of (dis)inhibition in creativity: Decreased inhibition improves idea generation. Cognition, 134, 110–120.  https://doi.org/10.1016/j.cognition.2014.09.001.CrossRefPubMedGoogle Scholar
  75. Runco, M. A., & Acar, S. (2010). Do tests of divergent thinking have an experiential bias? Psychology of Aesthetics, Creativity, and the Arts, 4(3), 144–148.  https://doi.org/10.1037/a0018969.CrossRefGoogle Scholar
  76. Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24(1), 92–96.  https://doi.org/10.1080/10400419.2012.650092.CrossRefGoogle Scholar
  77. Sack, A. T., Camprodon, J. A., Pascual-Leone, A., & Goebel, R. (2005). The dynamics of interhemispheric compensatory processes in mental imagery. SCIENCE, 308(5722), 702–704.CrossRefGoogle Scholar
  78. Shelton, A. L., & Gabrieli, J. D. (2002). Neural correlates of encoding space from route and survey perspectives. The Journal of Neuroscience, 22(7), 2711–2717.CrossRefGoogle Scholar
  79. Silvia, P. J., Beaty, R. E., & Nusbaum, E. C. (2013). Verbal fluency and creativity: General and specific contributions of broad retrieval ability (Gr) factors to divergent thinking. Intelligence, 41(5), 328–340.  https://doi.org/10.1016/j.intell.2013.05.004.CrossRefGoogle Scholar
  80. Simonton, D. K. (2000). Creativity: Cognitive, personal, developmental, and social aspects. American Psychologist, 55(1), 151.CrossRefGoogle Scholar
  81. Slotnick, S. D., & Schacter, D. L. (2006). The nature of memory related activity in early visual areas. Neuropsychologia, 44(14), 2874–2886.CrossRefGoogle Scholar
  82. Slotnick, S. D., Thompson, W. L., & Kosslyn, S. M. (2012). Visual memory and visual mental imagery recruit common control and sensory regions of the brain. Cognitive Neuroscience, 3(1), 14–20.CrossRefGoogle Scholar
  83. Sowden, P. T., Pringle, A., & Gabora, L. (2014). The shifting sands of creative thinking: Connections to dual-process theory. Thinking & Reasoning, 21(1), 40–60.  https://doi.org/10.1080/13546783.2014.885464.CrossRefGoogle Scholar
  84. Sternberg, R. J., & Lubart, T. I. (1996). Investing in creativity. The American Psychologist, 51(7), 677.CrossRefGoogle Scholar
  85. Sun, J., Chen, Q., Zhang, Q., Li, Y., Li, H., Wei, D., . . . Qiu, J. (2016). Training your brain to be more creative: Brain functional and structural changes induced by divergent thinking training. Human Brain Mapping, 37(10), 3375–3387.  https://doi.org/10.1002/hbm.23246.
  86. Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Ai, F., & Kawashima, R. (2010). Regional gray matter volume of dopaminergic system associate with creativity: Evidence from voxel-based morphometry. Neuroimage, 51(2), 578–585.CrossRefGoogle Scholar
  87. Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Rui, N., & Kawashima, R. (2011). Failing to deactivate: The association between brain activity during a working memory task and creativity. Neuroimage, 55(2), 681–687.CrossRefGoogle Scholar
  88. Thompson-Schill, S. L., & Botvinick, M. M. (2006). Resolving conflict: A response to martin and cheng. Psychonomic Bulletin & Review,13(3), 402–408.Google Scholar
  89. Tsukiura, T., Fujii, T., Takahashi, T., Xiao, R., Sugiura, M., Okuda, J., . . . Yamadori, A. (2002). Medial temporal lobe activation during context-dependent relational processes in episodic retrieval: An fMRI study. Human Brain Mapping, 17(4), 203–213.Google Scholar
  90. Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53(1), 1–25.CrossRefGoogle Scholar
  91. Turriziani, P., Fadda, L., Caltagirone, C., & Carlesimo, G. A. (2004). Recognition memory for single items and for associations in amnesic patients. Neuropsychologia, 42(4), 426–433.CrossRefGoogle Scholar
  92. Tyler, L. K., & Moss, H. E. (2001). Towards a distributed account of conceptual knowledge. Trends in Cognitive Sciences, 5(6), 244–252.Google Scholar
  93. Wang, D. (2007). A report on the third revision of combined raven’s test (CRT-C3) for children in China. Chinese Journal of Clinical Psychology, 15(6), 559.Google Scholar
  94. Wei, D., Yang, J., Li, W., Wang, K., Zhang, Q., & Qiu, J. (2014). Increased resting functional connectivity of the medial prefrontal cortex in creativity by means of cognitive stimulation. Cortex, 51, 92–102.  https://doi.org/10.1016/j.cortex.2013.09.004.CrossRefPubMedGoogle Scholar
  95. White, H. A., & Shah, P. (2006). Uninhibited imaginations: Creativity in adults with attention-deficit/hyperactivity disorder. Personality and Individual Differences, 40(6), 1121–1131.CrossRefGoogle Scholar
  96. Wilson, R. C., Guilford, J. P., & Christensen, P. R. J. P. B. (1953). The measurement of individual differences in originality. 50(5), 362–370.Google Scholar
  97. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8(8), 665–670.  https://doi.org/10.1038/nmeth.1635.CrossRefPubMedPubMedCentralGoogle Scholar
  98. Zeman, A., Dewar, M., & Della Sala, S. (2015). Lives without imagery–congenital aphantasia. Cortex, 3.Google Scholar
  99. Zeng, L., Proctor, R. W., & Salvendy, G. (2011). Can traditional divergent thinking tests be trusted in measuring and predicting real-world creativity? Creativity Research Journal, 23(1), 24–37.  https://doi.org/10.1080/10400419.2011.545713.CrossRefGoogle Scholar
  100. Zhang, H., Liu, J., & Zhang, Q. (2014). Neural representations for the generation of inventive conceptions inspired by adaptive feature optimization of biological species. Cortex, 50, 162–173.  https://doi.org/10.1016/j.cortex.2013.01.015.CrossRefPubMedGoogle Scholar
  101. Zhang, L., Qiao, L., Chen, Q., Yang, W., Xu, M., Yao, X., . . . Yang, D. (2016). Gray matter volume of the lingual gyrus mediates the relationship between inhibition function and divergent thinking. Frontiers in Psychology, 7.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lijie Zhang
    • 1
    • 2
  • Lei Qiao
    • 3
  • Xianwei Che
    • 4
  • Mengsi Xu
    • 1
    • 2
  • Qunlin Chen
    • 1
    • 2
  • Wenjing Yang
    • 1
    • 2
  • Jiang Qiu
    • 1
    • 2
    Email author
  • Dong Yang
    • 1
    • 2
    Email author
  1. 1.School of PsychologySouthwest UniversityChongqingChina
  2. 2.Key Laboratory of Cognition and Personality, Ministry of EducationSouthwest UniversityChongqingChina
  3. 3.School of Psychology and SocialShenzhen UniversityShenzhenChina
  4. 4.Monash Alfred Psychiatry Research Centre (MAPrc), The Alfred and Central Clinical SchoolMonash UniversityMelbourneAustralia

Personalised recommendations