Advertisement

Exploring the relationship between personality structure and smartphone usage

  • Vlad BurtăverdeEmail author
  • Sebastian Vlăsceanu
  • Eugen Avram
Article
  • 1 Downloads

Abstract

This study aimed to investigate the relationship between personality dispositions and actual and observed behavior expressed through several smartphone apps categories (relying on a built-in function of the smartphone, the app usage from the battery information menu), as well as to investigate the association between personality traits and the number of installed apps per category. The research sample consisted of 341 participants that monitored their app usage. In addition, participants completed measures related to personality structure (Big Five, HEXACO, and the Dark Triad). The findings of the study showed that personality dispositions predicted smartphone apps usage in various categories such as entertainment apps, music apps, gaming apps, business apps, e-health apps, and dating apps. In conclusion, this study showed that actual behavior expressed through various app categories is associated with broad and important personality dimensions. The findings of this research can be useful in integrating actual behavior in psychological research.

Keywords

Personality structure Smartphone usage App usage Big five 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors have no conflicts of interest.

Ethical Approval

The research was approved by the ethical committee of University of Bucharest.

References

  1. Andrews, S., Ellis, D. A., Shaw, H., & Piwek, L. (2015). Beyond self-report: Tools to compare estimated and real-world smartphone use. PLoS One, 10(10).Google Scholar
  2. Avram, E., Burtaverde, V., & Zanfirescu, A. Ș. (2019). The incremental validity of career adaptability in predicting academic performance. Social Psychology of Education, 1–16.Google Scholar
  3. Arpaci, I. (2018). The moderating effect of gender in the relationship between narcissism and selfie-posting behavior. Personality and Individual Differences, 134, 71–74.CrossRefGoogle Scholar
  4. Arpaci, I., Baloğlu, M., & Kesici, Ş. (2018). The relationship among individual differences in individualism-collectivism, extraversion, and self-presentation. Personality and Individual Differences, 121, 89–92.CrossRefGoogle Scholar
  5. Ashton, M. C., & Lee, K. (2009). The HEXACO–60: A short measure of the major dimensions of personality. Journal of Personality Assessment, 91(4), 340–345.PubMedCrossRefGoogle Scholar
  6. Barrick, M. R., & Mount, M. K. (1991). The big five personality dimensions and job performance: A meta-analysis. Personnel Psychology, 44(1), 1–26.CrossRefGoogle Scholar
  7. Bass, B. M. (1999). Two decades of research and development in transformational leadership. European Journal of Work and Organizational Psychology, 8(1), 9–32.CrossRefGoogle Scholar
  8. Baumeister, R. F., Vohs, K. D., & Funder, D. C. (2007). Psychology as the science of self-reports and finger movements: Whatever happened to actual behavior? Perspectives on Psychological Science, 2(4), 396–403.PubMedCrossRefGoogle Scholar
  9. Burtăverde, V., & De Raad, B. (2019). Taxonomy and structure of the Romanian personality lexicon. International Journal of Psychology, 54(3), 377–387.Google Scholar
  10. Burtăverde, V., Chraif, M., Aniţei, M., & Mihăilă, T. (2016). The incremental validity of the dark triad in predicting driving aggression. Accident Analysis & Prevention, 96, 1–11.CrossRefGoogle Scholar
  11. Butt, S., & Phillips, J. G. (2008). Personality and self-reported mobile phone use. Computers in Human Behavior, 24(2), 346–360.CrossRefGoogle Scholar
  12. Chittaranjan, G., Blom, J., & Gatica-Perez, D. (2013). Mining large-scale smartphone data for personality studies. Personal and Ubiquitous Computing, 17(3), 433–450.CrossRefGoogle Scholar
  13. de Montjoye, Y. A., Quoidbach, J., Robic, F., & Pentland, A. S. (2013). Predicting personality using novel mobile phone-based metrics. In International Conference on Social Computing, behavioral-cultural modeling, and prediction (pp. 48–55). Springer, Berlin, Heidelberg.Google Scholar
  14. Dunning, D., Heath, C., & Suls, J. M. (2005). Picture imperfect. Scientific American Mind, 16(4), 20–27.CrossRefGoogle Scholar
  15. Elhai, J. D., Dvorak, R. D., Levine, J. C., & Hall, B. J. (2017). Problematic smartphone use: A conceptual overview and systematic review of relations with anxiety and depression psychopathology. Journal of Affective Disorders, 207, 251–259.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Elhai, J. D., Tiamiyu, M. F., Weeks, J. W., Levine, J. C., Picard, K. J., & Hall, B. J. (2018a). Depression and emotion regulation predict objective smartphone use measured over one week. Personality and Individual Differences, 133, 21–28.CrossRefGoogle Scholar
  17. Elhai, J. D., Levine, J. C., O'Brien, K. D., & Armour, C. (2018b). Distress tolerance and mindfulness mediate relations between depression and anxiety sensitivity with problematic smartphone use. Computers in Human Behavior, 84, 477–484.CrossRefGoogle Scholar
  18. Elhai, J. D., Rozgonjuk, D., Yildirim, C., Alghraibeh, A. M., & Alafnan, A. A. (2019). Worry and anger are associated with latent classes of problematic smartphone use severity among college students. Journal of Affective Disorders, 246, 209–216.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Ellis, D. A., Davidson, B. I., Shaw, H., & Geyer, K. (2019). Do smartphone usage scales predict behavior? International Journal of Human-Computer Studies, 130, 86–92.CrossRefGoogle Scholar
  20. Furr, R. M. (2009). Personality psychology as a truly behavioural science. European Journal of Personality: Published for the European Association of Personality Psychology, 23(5), 369–401.CrossRefGoogle Scholar
  21. Goldberg, L. R. (1990). An alternative “description of personality”: The big-five factor structure. Journal of Personality and Social Psychology, 59(6), 1216.PubMedCrossRefGoogle Scholar
  22. Gosling, S. D., & Mason, W. (2015). Internet research in psychology. Annual Review of Psychology, 66, 877–902.CrossRefGoogle Scholar
  23. Gosling, S. D., Rentfrow, P. J., & Swann Jr., W. B. (2003). A very brief measure of the big-five personality domains. Journal of Research in Personality, 37(6), 504–528.CrossRefGoogle Scholar
  24. Gower, A. D., & Moreno, M. A. (2018). A novel approach to evaluating mobile smartphone screen time for iPhones: feasibility and preliminary findings. JMIR mHealth and uHealth, 6(11), e11012. Google Scholar
  25. Haladyna, T. M., & Downing, S. M. (2004). Construct-irrelevant variance in high-stakes testing. Educational Measurement: Issues and Practice, 23(1), 17–27.CrossRefGoogle Scholar
  26. Hare, R. D. (1991). The Hare Psychopathy Checklist—Revised manual. Toronto, Ontario, Canada: Multi-Health Systems.Google Scholar
  27. Horwood, S., & Anglim, J. (2018). Personality and problematic smartphone use: A facet-level analysis using the five factor model and HEXACO frameworks. Computers in Human Behavior, 85, 349–359.CrossRefGoogle Scholar
  28. John, O. P., Naumann, L. P., & Soto, C. J. (2008). Paradigm shift to the integrative big five trait taxonomy: History, measurement, and conceptual issues. In O. P. John, R. W. Robins, & L. A. Pervin (Eds.), Handbook of personality. Theory and research (3rd ed., pp. 114–158). New York: The Guilford Press.Google Scholar
  29. Jonason, P. K., Li, N. P., Webster, G. D., & Schmitt, D. P. (2009). The dark triad: Facilitating a short-term mating strategy in men. European Journal of Personality: Published for the European Association of Personality Psychology, 23(1), 5–18.CrossRefGoogle Scholar
  30. Jones, D. N., & Paulhus, D. L. (2014). Introducing the short dark triad (SD3) a brief measure of dark personality traits. Assessment, 21(1), 28–41.CrossRefGoogle Scholar
  31. Kim, Y., Briley, D. A., & Ocepek, M. G. (2015). Differential innovation of smartphone and application use by sociodemographics and personality. Computers in Human Behavior, 44, 141–147.CrossRefGoogle Scholar
  32. Lane, W., & Manner, C. (2011). The impact of personality traits on smartphone ownership and use. International Journal of Business and Social Science, 2, 22–28.  Google Scholar
  33. Lee, K., & Ashton, M. C. (2014). The dark triad, the big five, and the HEXACO model. Personality and Individual Differences, 67, 2–5.Google Scholar
  34. Lee, K., Ashton, M. C., Wiltshire, J., Bourdage, J. S., Visser, B. A., & Gallucci, A. (2013). Sex, power, and money: Prediction from the dark triad and honesty–humility. European Journal of Personality, 27(2), 169–184.CrossRefGoogle Scholar
  35. Lievens, F., De Corte, W., & Schollaert, E. (2008). A closer look at the frame-of-reference effect in personality scale scores and validity. Journal of Applied Psychology, 93(2), 268.PubMedCrossRefPubMedCentralGoogle Scholar
  36. McElroy, J., Hendrickson, A., Townsend, A., & DeMarie, S. (2007). Dispositional factors in internet use: Personality versus cognitive style. MIS Quarterly, 31(4), 809–820.CrossRefGoogle Scholar
  37. Mehl, M. R., Gosling, S. D., & Pennebaker, J. W. (2006). Personality in its natural habitat: Manifestations and implicit folk theories of personality in daily life. Journal of Personality and Social Psychology, 90, 862–877.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Montag, C., Błaszkiewicz, K., Sariyska, R., Lachmann, B., Andone, I., Trendafilov, B., ... & Markowetz, A. (2015). Smartphone usage in the 21st century: who is active on WhatsApp?. BMC research notes, 8(1), 331.Google Scholar
  39. Moore, K., & McElroy, J. C. (2012). The influence of personality on Facebook usage, wall postings, and regret. Computers in Human Behavior, 28(1), 267–274.CrossRefGoogle Scholar
  40. Morgeson, F. P., Campion, M. A., Dipboye, R. L., Hollenbeck, J. R., Murphy, K., & Schmitt, N. (2007). Are we getting fooled again? Coming to terms with limitations in the use of personality tests for personnel selection. Personnel Psychology, 60(4), 1029–1049.CrossRefGoogle Scholar
  41. Özteke Kozan, H. İ., Baloğlu, M., Kesici, Ş., & Arpacı, İ. (2019). The role of personality and psychological needs on the problematic internet use and problematic social media use. Addicta: The Turkish Journal on Addictions, 6(2), 203–219.CrossRefGoogle Scholar
  42. Paulhus, D. L., & Vazire, S. (2007). The self-report method. In R. R. Robins, R. C. Fraley, & R. F. Krueger (Eds.), Handbook of research methods in personality psychology (pp. 224–239). New York: The Guilford Press.Google Scholar
  43. Paulhus, D. L., & Williams, K. M. (2002). The dark triad of personality: Narcissism, Machiavellianism, and psychopathy. Journal of Research in Personality, 36(6), 556–563.CrossRefGoogle Scholar
  44. Paulhus, D. L., Curtis, S. R., & Jones, D. N. (2018). Aggression as a trait: the Dark Tetrad alternative. Current opinion in psychology, 19, 88–92.PubMedCrossRefGoogle Scholar
  45. Plutchik, R., Kellerman, H., & Conte, H. R. (1979). A structural theory of ego defenses and emotions. In C. Izard (Ed.), Emotions in personality and psychopathology (pp. 227–257). Boston: Springer.CrossRefGoogle Scholar
  46. Roberts, B. W., Walton, K. E., & Bogg, T. (2005). Conscientiousness and health across the life course. Review of General Psychology, 9(2), 156.CrossRefGoogle Scholar
  47. Rozgonjuk, D., & Elhai, J. D. (2019). Emotion regulation in relation to smartphone use: Process smartphone use mediates the association between expressive suppression and problematic smartphone use. Current Psychology, 1–10. Google Scholar
  48. Rozgonjuk, D., Kattago, M., & Täht, K. (2018a). Social media use in lectures mediates the relationship between procrastination and problematic smartphone use. Computers in Human Behavior, 89, 191–198.CrossRefGoogle Scholar
  49. Rozgonjuk, D., Levine, J. C., Hall, B. J., & Elhai, J. D. (2018b). The association between problematic smartphone use, depression and anxiety symptom severity, and objectively measured smartphone use over one week. Computers in Human Behavior, 87, 10–17.CrossRefGoogle Scholar
  50. Rozgonjuk, D., Elhai, J. D., Täht, K., Vassil, K., Levine, J. C., & Asmundson, G. J. G. (2019). Non-social smartphone use mediates the relationship between intolerance of uncertainty and problematic smartphone use: Evidence from a repeated-measures study. Computers in Human Behavior.  https://doi.org/10.1016/j.chb.2019.02.013.CrossRefGoogle Scholar
  51. Saucier, G., Thalmayer, A. G., & Bel-Bahar, T. S. (2014). Human attribute concepts: Relative ubiquity across twelve mutually isolated languages. Journal of Personality and Social Psychology, 107, 199–216.PubMedCrossRefGoogle Scholar
  52. Schmitt, D. P., & Shackelford, T. K. (2008). Big five traits related to short-term mating: From personality to promiscuity across 46 nations. Evolutionary Psychology, 6(2), 246–282.CrossRefGoogle Scholar
  53. Stachl, C., Hilbert, S., Au, J. Q., Buschek, D., De Luca, A., Bischl, B., et al. (2017). Personality traits predict smartphone usage. European Journal of Personality, 31(6), 701–722.CrossRefGoogle Scholar
  54. Statistia (2018). Number of available applications in the Google Play Store from December 2009 to September 2018. Retrieved from https://www.statista.com/statistics/266210/number-of-available-applications-in-thegoogle-play-store/. Accessed 01/03/2019. 
  55. Vazire, S. (2010). Who knows what about a person? The self–other knowledge asymmetry (SOKA) model. Journal of Personality and Social Psychology, 98(2), 281.PubMedCrossRefGoogle Scholar
  56. Veselka, L., Schermer, J. A., Petrides, K. V., Cherkas, L. F., Spector, T. D., & Vernon, P. A. (2009). A general factor of personality: Evidence from the HEXACO model and a measure of trait emotional intelligence. Twin Research and Human Genetics, 12(5), 420–424.PubMedCrossRefGoogle Scholar
  57. Wilcockson, T. D. W., Ellis, D. A., & Shaw, H. (2018). Determining typical smartphone usage: What data do we need? Cyberpsychology, Behavior and Social Networking, 21(6), 395–398.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Xu, R., Frey, R. M., Fleisch, E., & Ilic, A. (2016). Understanding the impact of personality traits on mobile app adoption–insights from a large-scale field study. Computers in Human Behavior, 62, 244–256.CrossRefGoogle Scholar
  59. Yarkoni, T. (2010). Personality in 100,000 words: A large-scale analysis of personality and word use among bloggers. Journal of Research in Personality, 44, 363–373.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Yarkoni, T. (2012). Psychoinformatics: New horizons at the interface of the psychological and computing sciences. Current Directions in Psychological Science, 21(6), 391–397.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Psychology and Educational SciencesUniversity of BucharestBucharestRomania

Personalised recommendations