Thermionic sodium ion source versus corona discharge in detection of alkaloids using ion mobility spectrometry

  • Masood Asadi
  • Younes Valadbeigi
  • Mahmoud TabrizchiEmail author
Original Research


IMS spectra obtained by using a thermal ionization sodium ion (SI) source and a corona discharge (CD) source were compared in terms of resolution, selectivity and sensitivity. The reactant ion peak (RIP) for the SI source is a single narrow peak which appears in a shorter drift time compared to the main RIP of the CD ion source, (H2O)nH3O+. Comparison of the IMS spectra of selected alkaloids obtained with both the CD and the SI sources shows that the latter exhibits simpler pattern, including a narrow single peak for each compound, well separated from other samples peak. Furthermore, the product ion peaks (PIP) in the SI source appeared at higher drift times leading to higher peak-to-peak resolution. However, the sodium ion source is less sensitive to the selected alkaloids compared to the CD ion source.


Thermal ionization Ion mobility spectrometry Sodium ion Alkaloids Ionization source 



Authors would like to thank Dr. H. Farrokhpour and Dr. V. Ilbeigi, and H. Shahraki, for their help in this work.

Supplementary material

12127_2019_249_MOESM1_ESM.docx (56 kb)
ESM 1 (DOCX 55 kb)


  1. 1.
    Eiceman GA, Karpas Z, Hill HH (2013) Ion Mobility Spectrometry, 3rd edn. CRC Press, Boca RotanGoogle Scholar
  2. 2.
    Ewing RG, Atkinson DA, Eiceman GA, Ewing GJ (2001) A critical review of ion mobility spectrometry for the detection of explosives and explosives related compounds. Talanta 73:692–699Google Scholar
  3. 3.
    Tabrizchi M, Ilbeigi V (2010) Detection of explosives by positive corona ion mobility spectrometry. J Hazard Mater 176(1-3):692–696. CrossRefPubMedGoogle Scholar
  4. 4.
    Kanu AB, Haigh PE, Hill HH (2005) Surface detection of chemical warfare agent simulants and degradation products. Anal Chim Acta 553(1-2):148–159. CrossRefGoogle Scholar
  5. 5.
    Makinen M, Anttalainen O, Sillanpaain MET (2010) Ion mobility spectrometry and its application in detection of chemical warfare agents. Anal Chem 82(23):9594–9600. CrossRefPubMedGoogle Scholar
  6. 6.
    Wu C, Siems WF, Hill HH (2000) Secondary electrospray ionization ion mobility spectrometry - mass spectrometry of illicit drugs. Anal Chem 72(2):396–403. CrossRefPubMedGoogle Scholar
  7. 7.
    Clemmer DE, Jarrold MF (1997) Ion mobility measurements and their applications to clusters and biomolecules. J Mass Spectrom 32(6):577–592.<577::AID-JMS530>3.0.CO;2-4 CrossRefGoogle Scholar
  8. 8.
    Srebalus CA, Li JW, Marshall WS, Clemmer DE (1999) Gas-phase separations of electrosprayed peptide libraries. Anal Chem 71(18):3918–3927. CrossRefPubMedGoogle Scholar
  9. 9.
    Su CW, Babcock K, Rigdon S (1998) The detection of cocaine on petroleum contaminated samples utilizing ion mobility spectrometry. Int J Ion Mobil Spectrom 1:15–27Google Scholar
  10. 10.
    Roch T, Baumbach JI (1998) Laser-based ion mobility spectrometry as an analytical tool for soil analysis. Int J Ion Mobil Spectrom 1:43–47Google Scholar
  11. 11.
    Vautz W, Mauntz W, Engell S, Baumbach JI (2009) Monitoring of emulsion polymerisation processes using ion mobility spectrometry-a pilot study. Macromol React Eng 3(2-3):85–90. CrossRefGoogle Scholar
  12. 12.
    Vautz W, Baumbach JI, Westhoff M, Zuchner K, Carstens ETH, Perl T (2010) Breath sampling control for medical application. Int J Ion Mobil Spectrom 13:31–46Google Scholar
  13. 13.
    Westhoff M, Litterst P, Freitag L, Urfer W, Bader S, Baumbach JI (2009) Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of patients with lung cancer: results of a pilot study. Thorax 64(9):744–748. CrossRefPubMedGoogle Scholar
  14. 14.
    Kanu AB, Hill HH, Gribb MM, Walters RN (2007) A small subsurface ion mobility spectrometer sensor for detecting environmental soil-gas contaminants. J Environ Monit 9(1):51–60. CrossRefPubMedGoogle Scholar
  15. 15.
    Stach J, Arthen-Engeland T, Flachowsky J, Borsdorf H (2002) A simple field method for determination of MTBE in water using hand held ion mobility (IMS). Int J Ion Mobil Spectrom 5:82–86Google Scholar
  16. 16.
    Karpas Z (2013) Application of ion mobility spectrometry (IMS) in the field of foodomics. Food Res Int 54(1):1146–1151. CrossRefGoogle Scholar
  17. 17.
    Vautz W, Zimmermann D, Hartmann M, Baumbach JI, Nolte J, Jung J (2006) Ion mobility spectrometry for food quality and safety. Food Addit Contam 23(11):1064–1073. CrossRefPubMedGoogle Scholar
  18. 18.
    Eiceman GA, Kremer JH, Snyder AP, Tofferi JK (1988) Quantitative assessment of a corona discharge ion source in atmospheric pressure ionization-mass spectrometry for ambient air monitoring. Int J Environ Anal Chem 33(3-4):161–183. CrossRefGoogle Scholar
  19. 19.
    Tabrizchi M, Khayamian T, Taj N (2002) Design and optimization of a corona discharge ionization source for ion mobility spectrometry. Rev Sci Instrum 7:2321–2328Google Scholar
  20. 20.
    Baumbach JI, Sielemann S, Xie Z, Schmidt H (2003) Detection of the gasoline components methyl tert-butyl ether, benzene, toluene, and m-xylene using ion mobility spectrometers with a radioactive and UV ionization source. Anal Chem 75(6):1483–1490. CrossRefPubMedGoogle Scholar
  21. 21.
    Wittmer D, Luckenbill BK, Hill HH, Chen YH (1994) Electrospray-ionization ion mobility spectrometry. Anal Chem 66(14):2348–2355CrossRefGoogle Scholar
  22. 22.
    Baim MA, Eatherton RL, Hill HH (1983) Ion mobility detector for gas chromatography with a direct photoionization source. Anal Chem 55(11):1761–1766CrossRefGoogle Scholar
  23. 23.
    Rasulev UK, Iskhakova SS, Khasanov U, Mikhailin AV (2001) Atmospheric pressure surface ionization indicator of narcotic. Int J Ion Mobil Spectrom 4:121–125Google Scholar
  24. 24.
    Bramwell CJ, Creaser CS, Reynolds JC, Dennis R (2002) Atmospheric pressure matrix assisted laser desorption/ionization combined with ion mobility spectrometry. Int J Ion Mobil Spectrom 5:87–90Google Scholar
  25. 25.
    Steiner WE, Clowers BH, English WA, Hill HH (2004) Atmospheric pressure matrix-assisted laser desorption/ionization with analysis by ion mobility time of-flight mass spectrometry. Rapid Commun Mass Spectrom 18(8):882–888. CrossRefPubMedGoogle Scholar
  26. 26.
    Waltman MJ, Dwivedi P, Hill HH, Blanchard WC, Ewing RG (2008) Characterization of a distributed plasma ionization source (DPIS) for ion mobility spectrometry and mass spectrometry. Talanta 77(1):249–255. CrossRefPubMedGoogle Scholar
  27. 27.
    Tabrizchi M (2003) Thermal ionization ion mobility spectrometry of alkali salts. Anal Chem 75:3101:3106CrossRefGoogle Scholar
  28. 28.
    Dong C, Wang W, Li H (2008) Atmospheric pressure air direct current glow discharge ionization source for ion mobility spectrometry. Anal Chem 80(10):3925–3930. CrossRefPubMedGoogle Scholar
  29. 29.
    Bolton HC, Grant J, McWilliam IG, Nicholson AJC, Swingler DL (1978) Ionization in flames. II. Mass-spectrometric and mobility analyses for the flame ionization detector. Proc R Soc London A Math Phys Eng Sci 360(1701):265–277CrossRefGoogle Scholar
  30. 30.
    Heptner A, Angerstein N, Reinecke T, Bunert E, Kirk AT, Niedzwiecki I, Zimmermann S (2016) Improving the analytical performance of ion mobility spectrometer using a non-radioactive electron source. Int J Ion Mobil Spectrom 19(4):175–182. CrossRefGoogle Scholar
  31. 31.
    Roehl JE, Spangler GE, Donovan WH, Nowak DM (1992) Nonradioactive alkali cation source for ion mobility. Proc 1st Workshop on Ion Mobility Spectrometry, Mesalero, NMGoogle Scholar
  32. 32.
    Tabrizchi M, Hosseini ZS (2008) An alkali ion source based on graphite intercalation compounds for ion mobility spectrometry. Meas Sci Technol 19:075603/1–075603/6CrossRefGoogle Scholar
  33. 33.
    Ilbeigi V, Valadbeigi Y, Tabrizchi M (2016) Ion mobility spectrometry of heavy metals. Anal Chem 88(14):7324–7328. CrossRefPubMedGoogle Scholar
  34. 34.
    Shahraki H, Tabrizchi M, Farrokhpour H (2018) Alkali halides based on nano-alumina as positive and negative ion source for ion mobility and mass spectrometry. J Iran Chem Soc 15(4):863–870, 2018. CrossRefGoogle Scholar
  35. 35.
    Shahraki H, Tabrizchi M, Farrokhpor H (2018) Detection of explosives using negative ion mobility spectrometry in air based on dopant-assisted thermal ionization. J Hazard Mater 357:1–9. CrossRefPubMedGoogle Scholar
  36. 36.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE,. Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford, DOI:
  37. 37.
    Valadbeigi Y (2016) CBS-Q and DFT calculations of lithium and sodium cations affinities and basicities of 60 organic molecules. Comput Theor Chem 1091:169–175. CrossRefGoogle Scholar
  38. 38.
    Valadbeigi Y, Ilbeigi V, Michalczuk B, Sabo M, Matejcik S (2019) Study of atmospheric pressure chemical ionization mechanism in corona discharge ion source with and without NH3 dopant by ion mobility spectrometry combined with mass spectrometry: a theoretical and experimental study. J Phys Chem A 123(1):313–322CrossRefGoogle Scholar
  39. 39.
    Tabrizchi M, Khezri E (2008) The effect of ion molecule reactions on peaks in ion mobility spectrometry. Int J Ion Mobil Spectrom 11(1-4):19–25. CrossRefGoogle Scholar
  40. 40.
    Bahrami H, Tabrizchi M, Farrokhpour H (2013) Protonation of caffeine: a theoretical and experimental study. Chem Phys 415:222–227. CrossRefGoogle Scholar
  41. 41.
    Valadbeigi Y, Gal JF (2017) Directionality of cation/molecule bonding in Lewis bases containing the carbonyl group. J Phys Chem A 121(36):6810–6822. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Masood Asadi
    • 1
  • Younes Valadbeigi
    • 2
  • Mahmoud Tabrizchi
    • 1
    Email author
  1. 1.Department of ChemistryIsfahan University of TechnologyIsfahanIran
  2. 2.Department of Chemistry, Faculty of ScienceImam Khomeini International UniversityQazvinIran

Personalised recommendations