Exogenous factors of influence on exhaled breath analysis by ion-mobility spectrometry (MCC/IMS)

  • Michael WesthoffEmail author
  • M. Rickermann
  • P. Litterst
  • J. I. Baumbach
Original Research


The interpretation of exhaled breath analysis needs to address to the influence of exogenous factors, especially to a transfer of confounding analytes by the test persons. A test person who was exposed to a disinfectant had exhaled breath analysis by MCC/IMS (Bioscout®) after different time intervals. Additionally, a new sampling method with inhalation of synthetic air before breath analysis was tested. After exposure to the disinfectant, 3-Pentanone monomer, 3-Pentanone dimer, Hexanal, 3-Pentanone trimer, 2-Propanamine, 1-Propanol, Benzene, Nonanal showed significantly higher intensities, in exhaled breath and air of the examination room, compared to the corresponding baseline measurements. Only one ingredient of the disinfectant (1-Propanol) was identical to the 8 analytes. Prolonging the time intervals between exposure and breath analysis showed a decrease of their intensities. However, the half-time of the decrease was different. The inhalation of synthetic air –more than consequently airing the examination room with fresh air –reduced the exogenous and also relevant endogenous analytes, leading to a reduction and even changing polarity of the alveolar gradient. The interpretation of exhaled breath needs further knowledge about the former residence of the proband and the likelihood and relevance of the inhalation of local, site-specific and confounding exogenous analytes by him. Their inhalation facilitates a transfer to the examination room and a detection of high concentrations in room air and exhaled breath, but also the exhalation of new analytes. This may lead to a misinterpretation of these analytes as endogenous resp. disease-specific ones.


Ion mobility spectrometry Multicapillary column Exhaled breath analysis Exogenous analytes Disinfectant 



The authors thank Mrs. B. Obertrifter, Lung Clinic Hemer, for her valuable technical assistance in MCC/IMS studies.

Compliance with ethical standards

Conflict of interest

JIBB declared to be an employee of a company producing spectrometers used. There are no other conflicts of interest.


  1. 1.
    Amann A, Spanel P, Smith D (2007) Breath analysis: the approach towards clinical applications. Mini Rev Med Chem 7(2):115–129CrossRefGoogle Scholar
  2. 2.
    Buszewski B, Ulanowska A, Ligor T, Denderz N, Amann A (2009) Analysis of exhaled breath from smokers, passive smokers and non-smokers by solid-phase microextraction gas chromatography/mass spectrometry. Biomed Chromatogr 23(5):551–556CrossRefGoogle Scholar
  3. 3.
    Jünger M, Bödeker B, Baumbach JI (2010) Peak assignment in multi-capillary column - ion mobility spectrometry using comparative studies with gas chromatography - mass spectrometry for exhaled breath analysis. Anal Bioanal Chem 396(1):471–482CrossRefGoogle Scholar
  4. 4.
    Kushch I, Schwarz K, Schwentner L, Baumann B, Dzien A, Schmid A, Unterkofler K, Gastl G, Spaněl P, Smith D, Amann A (2008) Compounds enhanced in a mass spectrometric profile of smokers’ exhaled breath versus nonsmokers as determined in a pilot study using PTR-MS. J Breath Res 2(2):026002CrossRefGoogle Scholar
  5. 5.
    Ligor T, Ligor M, Amann A, Ager C, Bachler M, Dzien A, Buszewski B (2008) The analysis of healthy volunteers’ exhaled breath by the use of solid-phase microextraction and GC-MS. J Breath Res 2(4):046006CrossRefGoogle Scholar
  6. 6.
    Mieth M, Schubert JK, Groger T, Sabel B, Kischkel S, Fuchs P, Hein D, Zimmermann R, Miekisch W (2010) Automated needle trap heart-cut GC/MS and needle trap comprehensive two-dimensional GC/TOF-MS for breath gas analysis in the clinical environment. Anal Chem 82:2541–255122CrossRefGoogle Scholar
  7. 7.
    Cheng ZJ, Warwick G, Yates DH, Thomas PS (2009) An electronic nose in the discrimination of breath from smokers and non-smokers: a model for toxin exposure. J Breath Res 3(3):036003CrossRefGoogle Scholar
  8. 8.
    Dragonieri S, Annema JT, Schot R, van der Schee MPC, Spanevello A, Carratu P, Resta O, Rabe KF, Sterk PJ (2009) An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung Cancer 64(2):166–170CrossRefGoogle Scholar
  9. 9.
    Horvath I, Lazar Z, Gyulai N, Kollai M, Losonczy G (2009) Exhaled biomarkers in lung cancer. Eur Respir J 34(1):261–275CrossRefGoogle Scholar
  10. 10.
    Dragonieri S, Schot R, Mertens BJA, le Cessie S, Gauw SA, Spanevello A, Resta O, Willard NP, Vink TJ, Rabe KF, Bel EH, Sterk PJ (2007) An electronic nose in the discrimination of patients with asthma and controls. J Allergy Clin Immunol 120(4):856–862CrossRefGoogle Scholar
  11. 11.
    Baumbach JI, Vautz W, Ruzsanyi V, Freitag L (2005) Metabolites in human breath: ion mobility spectrometers as diagnostic tools for lung diseases. In: Ammann A, Smith D (eds) Breath analysis for clinical diagnosis and therapeutic monitoring. World Scientific Publishing Co. Ptd. Ltd, Singapore, pp 53–66Google Scholar
  12. 12.
    Ruzsanyi V, Baumbach JI, Sielemann S, Litterst P, Westhoff M, Freitag L (2005) Detection of human metabolites using multi-capillary columns coupled to ion mobility spectrometers. J Chromatogr A 1084(1-2):145–151CrossRefGoogle Scholar
  13. 13.
    Westhoff M, Litterst P, Freitag L, Baumbach JI (2007) Ion mobility spectrometry in the diagnosis of sarcoidosis: results of a feasibility study. J Physiol Pharmacol 58:739–751Google Scholar
  14. 14.
    Bunkowski A, Bödeker S, Bader S, Westhoff M, Litterst P, Baumbach JI (2009) MCC/IMS signals in human breath related to sarcoidosis—results of a feasibility study using an automated peak finding procedure. J Breath Res 3(4):046001CrossRefGoogle Scholar
  15. 15.
    Vautz W, Nolte J, Fobbe R, Baumbach JI (2009) Breath analysis—performance and potential of ion mobility spectrometry. J Breath Res 3(3):036004CrossRefGoogle Scholar
  16. 16.
    Westhoff M, Litterst P, Freitag L, Urfer W, Bader S, Baumbach JI (2009) Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of patients with lung cancer: results of a pilot study. Thorax 64(9):744–748CrossRefGoogle Scholar
  17. 17.
    Perl T, Bödecker B, Jünger M, Nolte J, Vautz W (2010) Alignment of retention time obtained from multicapillary column gas chromatography used for VOC analysis with ion mobility spectrometry. Anal Bioanal Chem 397(6):2385–2394CrossRefGoogle Scholar
  18. 18.
    Baumbach JI, Eiceman GA (1999) Ion mobility spectrometry: arriving on site and moving beyond a low profile. Appl Spectrosc 53(9):338 A–355 ACrossRefGoogle Scholar
  19. 19.
    Eiceman GA, Karpas Z (1994) Ion mobility spectrometry. CRC Press, Boca Raton, Ann Arbor, London, Tokyo, pp 1–228Google Scholar
  20. 20.
    Bunkowski A, Maddula S, Davies AN, Westhoff M, Litterst P, Bödecker B, Baumbach JI (2010) One-year time series of investigations of analytes within human breath using ion mobility spectrometry. Int J Ion Mobil Spectrom 13(3-4):141–148CrossRefGoogle Scholar
  21. 21.
    Bödeker B, Davies AN, Maddula S, Baumbach JI (2010) Biomarker validation—room air variation during human breath investigations. Int J Ion Mobil Spectrom 13(3-4):177–184CrossRefGoogle Scholar
  22. 22.
    Westhoff M, Rickermann M, Franieck E, Littterst P, Baumbach JI (2019) Time series of indoor analytes and influence of exogenous factors on interpretation of breath analysis using ion mobility spectrometry (MCC/IMS). Int J Ion Mobil Spectrom 22 (1):39–49Google Scholar
  23. 23.
    Horváth I, Barnes PJ, Loukides S, Sterk PJ, Högman M, Olin AC, Amann A, Antus B, Baraldi E, Bikov A, Boots AW, Bos LD, Brinkman P, Bucca C, Carpagnano GE, Corradi M, Cristescu S, de Jongste JC, Dinh-Xuan AT, Dompeling E, Fens N, Fowler S, Hohlfeld JM, Holz O, Jöbsis Q, Van De Kant K, Knobel HH, Kostikas K, Lehtimäki L, Lundberg J, Montuschi P, Van Muylem A, Pennazza G, Reinhold P, Ricciardolo FLM, Rosias P, Santonico M, van der Schee MP, van Schooten FJ, Spanevello A, Tonia T, Vink TJ (2017) A European Respiratory Society technical standard: exhaled biomarkers in lung disease. Eur Respir J 49(4):1600965CrossRefGoogle Scholar
  24. 24.
    Baumbach JI (2006) Process analysis using ion mobility spectrometry. Anal Bioanal Chem 384(1):059–1070Google Scholar
  25. 25.
    Baumbach JI (2009) Ion mobility spectrometry coupled with multi-capillary columns for metabolic profiling of human breath. J Breath Res 3:1–16CrossRefGoogle Scholar
  26. 26.
    Bödeker B, Baumbach JI (2009) Analytical description of IMS-signals. Int J Ion Mobil Spectrom 12(3):103–108CrossRefGoogle Scholar
  27. 27.
    Bödeker B, Vautz W, Baumbach JI (2008a) Peak finding and referencing in MCC/IMS - data. Int J Ion Mobil Spectrom 11(1-4):83–88CrossRefGoogle Scholar
  28. 28.
    Bödeker B, Vautz W, Baumbach JI (2008b) Peak comparison in MCC/IMS – data – searching for potential biomarkers in human breath data. Int J Ion Mobil Spectrom 11(1-4):89–93CrossRefGoogle Scholar
  29. 29.
    Bödeker B, Vautz W, Baumbach JI (2008c) Visualisation of MCC/IMS – data. Int J Ion Mobil Spectrom 11(1-4):77–82CrossRefGoogle Scholar
  30. 30.
    Maurer F, Wolf A, Fink T, Rittershofer B, Heim N, Volk T, Baumbach JI, Kreuer S (2014) Wash-out of ambient air contaminations for breath measurements. J Breath Res 8(2):027107CrossRefGoogle Scholar
  31. 31.
    Collins DB, Wang C, Abbatt JPD (2018) Selective uptake of third-hand tobacco smoke components to inorganic and organic aerosol particles. Environ Sci Technol 52(22):13195–13201CrossRefGoogle Scholar
  32. 32.
    Díez-Izquierdo A, Cassanello-Peñarroya P, Lidón-Moyano C, Matilla-Santander N, Balaguer A, Martínez-Sánchez JM (2018) Update on thirdhand smoke: a comprehensive systematic review. Environ Res 167:341–371CrossRefGoogle Scholar
  33. 33.
    Gordon SM, Wallace LA, Brinkman MC, Callahan PJ, Kenny DV (2002) Volatile organic compounds as breath biomarkers for active and passive smoking. Environ Health Perspect 110(7):689–698CrossRefGoogle Scholar
  34. 34.
    Capone S, Tufariello M, Forleo A, Longo V, Giampetruzzi L, Radogna AV, Casino F, Siciliano P (2018) Chromatographic analysis of VOC patterns in exhaled breath from smokers and nonsmokers. Biomed Chromatogr 32:e4132Google Scholar
  35. 35.
    Gaida A, Holz O, Nell C, Schuchardt S, Lavae-Mokhtari B, Kruse L, Boas U, Langejuergen J, Allers M, Zimmermann S, Vogelmeier C, Koczulla AR, Hohlfeld JM (2016 Apr 15) A dual center study to compare breath volatile organic compounds from smokers and non-smokers with and without COPD. J Breath Res. 10(2):026006CrossRefGoogle Scholar
  36. 36.
    Bajtarevic A, Ager C, Pienz M, Klieber M, Schwarz K, Ligor M, Ligor T, Filipiak W, Denz H, Fiegl M (2009) Noninvasive detection of lung cancer by analysis of exhaled breath. BMC Cancer 9(1):348CrossRefGoogle Scholar
  37. 37.
    Pleil JD, Lindstrom AB (1995) Collection of a single alveolar exhaled breath for volatile organic compounds analysis. Am J Ind Med 27:109–112CrossRefGoogle Scholar
  38. 38.
    Allers M, Langejuergen J, Gaida A, Holz O, Schuchardt S, Hohlfeld JM, Zimmermann S (2016) Measurement of exhaled volatile organic compounds from patients with chronic obstructive pulmonary disease (COPD) using closed gas loop GC-IMS and GC-APCI-MS. J Breath Res 10(2):026004CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pneumology, Sleep and Respiratory Medicine, Lung Clinic HemerHemerGermany
  2. 2.University Witten-HerdeckeWittenGermany
  3. 3.University of Applied Sciences MünsterMünsterGermany
  4. 4.B. Braun Melsungen AG, Branch Dortmund, Center of Competence Breath AnalysisDortmundGermany
  5. 5.Faculty of Applied ChemistryReutlingen UniversityReutlingenGermany

Personalised recommendations