Advertisement

Influence of gas modifiers on the TIMS analysis of familiar explosives

  • Alan McKenzie-Coe
  • Francisco Fernandez-LimaEmail author
Original Research

Abstract

In the present work, we studied the influence of the bath composition (e.g., organic modifiers) on the mobility resolving power, resolution, and lifetime of familiar explosives during trapped ion mobility spectrometry (TIMS). Experimental results showed the dependence of the mobility with the organic modifiers (mass and size) for the case of TIMS-MS. Different from trends observed in drift tube like IMS devices, no correlation between the mobility resolving power and resolution in TIMS was observed with the bath gas composition (e.g., air, air + methanol, air +2-propanol, and air + acetone). Time decay plots showed that common explosives with adduct complexes signal decrease over time as a function of the trapping time, without any significant improvement with the addition of the organic modifiers. Theoretical calculation of potential clustering and dissociation pathways supported the time decay findings since no major energetic differences between the pathways were observed as a function of the organic modifiers. Our findings suggest that beside the size of the collision partner, there are specific intermolecular dynamics that drive the trapping behavior of familiar explosives.

Keywords

Trapped ion mobility mass spectrometry Common explosives Organic modifiers 

Notes

Acknowledgements

This work was supported by the National Science Foundation Division of Chemistry, under CAREER award CHE-1654274, with co-funding from the Division of Molecular and Cellular Biosciences to F.F.-L. The authors will also like to acknowledge the helpful discussions and technical support from Dr. Mark E. Ridgeway and Dr. Melvin A. Park from Bruker Daltonics Inc. during the development and installation of the custom-built TIMS-TOF MS instrument. We will also like to acknowledge Dr. Alexander Mebel support for the theoretical calculations.

Supplementary material

12127_2019_246_MOESM1_ESM.docx (595 kb)
ESM 1 (DOCX 595 kb)

References

  1. 1.
    Schenk ER, Ridgeway ME, Park MA, Leng F, Fernandez-Lima FA (2014) Isomerization kinetics of AT hook Decapeptide solution structures. Anal Chem 86(2):1210–1214CrossRefGoogle Scholar
  2. 2.
    Schenk ER, Mendez V, Landrum JT, Ridgeway ME, Park MA, Fernandez-Lima FA (2014) Direct observation of differences of carotenoid polyene chain cis/trans isomers resulting from structural topology. Anal Chem 86(4):2019–2024CrossRefGoogle Scholar
  3. 3.
    Hernandez DR, DeBord JD, Ridgeway ME, Kaplan DA, Park MA, Fernandez-Lima FA (2014) Ion dynamics in a trapped ion mobility spectrometer. Analyst 139(8):1913–1921CrossRefGoogle Scholar
  4. 4.
    McKenzie A, DeBord JD, Ridgeway ME, Park MA, Eiceman GA, Fernandez-Lima F (2015) Lifetimes and stabilities of familiar explosives molecular adduct complexes during ion mobility measurements. Analyst 140(16):5692–5699CrossRefGoogle Scholar
  5. 5.
    B. Schneider, T. Covey, E. Nazarov, DMS-MS separations with different transport gas modifiers, 2013Google Scholar
  6. 6.
    Kafle A, Coy SL, Wong BM, Fornace AJ Jr, Glick JJ, Vouros P (2014) Understanding gas phase modifier interactions in rapid analysis by differential mobility-tandem mass spectrometry. J Am Soc Mass Spectrom 25(7):1098–1113CrossRefGoogle Scholar
  7. 7.
    Levin DS, Vouros P, Miller RA, Nazarov EG, Morris JC (2006) Characterization of gas-phase molecular interactions on differential mobility ion behavior utilizing an electrospray ionization-differential mobility-mass spectrometer system. Anal Chem 78(1):96–106CrossRefGoogle Scholar
  8. 8.
    Porta T, Varesio E, Hopfgartner G (2013) Gas-phase separation of drugs and metabolites using modifier-assisted differential ion mobility spectrometry hyphenated to liquid extraction surface analysis and mass spectrometry. Anal Chem 85(24):11771–11779CrossRefGoogle Scholar
  9. 9.
    R. Fernández-Maestre, C. Wu, H.H. Hill, Buffer gas modifiers effect resolution in ion mobility spectrometry through selective ion-molecule clustering reactions, Rapid Commun Mass Spectrom : RCM, 26 (2012) 2211–2223, 19CrossRefGoogle Scholar
  10. 10.
    Waraksa E, Gaik U, Namieśnik J, Sillanpää M, Dymerski T, Wójtowicz M, Puton J (2016) Dopants and gas modifiers in ion mobility spectrometry, vol 82, pp 237–249Google Scholar
  11. 11.
    Butcher D, Miksovska J, Ridgeway ME, Park MA, Fernandez-Lima F The effects of solution additives and gas-phase modifiers on the molecular environment and conformational space of common heme proteins. Rapid Commun Mass Spectrom 0Google Scholar
  12. 12.
    Garabedian A, Leng F, Ridgeway ME, Park MA, Fernandez-Lima F (2018) Tailoring peptide conformational space with organic gas modifiers in TIMS-MS. Int J Ion Mobil Spectrom 21(1-2):43–48CrossRefGoogle Scholar
  13. 13.
    Fernandez-Lima FA, Kaplan DA, Park MA (2011) Note: integration of trapped ion mobility spectrometry with mass spectrometry. Rev Sci Instrum 82(12):126106CrossRefGoogle Scholar
  14. 14.
    Fernandez-Lima FA, Kaplan DA, Suetering J, Park MA (2011) Gas-phase separation using a trapped ion mobility spectrometer. Int J Ion Mobil Spectrom 14(2-3):93–98CrossRefGoogle Scholar
  15. 15.
    E.W. McDaniel, E.A. Mason, Mobility and diffusion of ions in gases, John Wiley and Sons, Inc., New York, New York, 1973Google Scholar
  16. 16.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J. Montgomery, J.A.T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, revision C.02, in: Gaussian, Inc., Wallingford CT, 2004Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryFlorida International UniversityMiamiUSA
  2. 2.Biomolecular Sciences InstituteFlorida International UniversityMiamiUSA

Personalised recommendations