Optimization of ion transport from atmospheric pressure ion sources

  • A.N. Arseniev
  • I.V. KurninEmail author
  • N.V. Krasnov
  • M.Z. Muradymov
  • T.V. Pomozov
  • M.I. Yavor
  • M.N. Krasnov
Original Research


An experimental study and numerical calculations of the influence of geometric and electrical parameters of ion sources with ionization at atmospheric pressure on the motion of ions from ionization site to an entrance orifice were carried out. The effect of space charge on the current-voltage characteristics of an electrode configuration of the ion source was experimentally shown. The results of numerical calculations of ion motion with allowance for the space charge in a stationary ion flow based on the statistical diffusion simulation model were shown to agree well with the experiment. The possibility of 100% ion transportation from the ionization area to a collector was demonstrated experimentally and numerically.


Ion flow Space charge Corona discharge Ion source with ionization at atmospheric pressure 



The work was carried out at the Institute for Analytical Instrumentation of the Russian Academy of Sciences, Saint Petersburg, within the research project “New mass spectrometric approaches to medical diagnostics and study of isotope effects in biology and development of the fundamental elements of mass spectrometers for their implementation” (FASO ISST number: 0074-2014-0012 State registration number: AAAA-A16-116041310010-6).


  1. 1.
    Alexandrov ML, Gall LN, Nikolaev VI, Krasnov NV, Pavlenko VA, Shkurov VA (2008) Extraction of ions from solutions under atmos-pheric pressure as a method for mass-spectrometric analysis of bioorganic compounds. Rapid Commun Mass Spectrom 22(3):267–270CrossRefGoogle Scholar
  2. 2.
    Arseniev AN, Krasnov NV, Muradymov MZ (2014) Investigation of electrospray stability with dynamic liquid flow splitter. J Anal Chem 69(14):1320–1322CrossRefGoogle Scholar
  3. 3.
    Bruins AP, Covey TR, Henion JD (1987) Ion spray interface for combined liquid chromatography/atmospheric pressure ionization mass spectrometry. Anal Chem 59(22):2642–2646CrossRefGoogle Scholar
  4. 4.
    Franzen J (1995) Method and device for transport of ions in gas through a capillary. US Patent N 5736740Google Scholar
  5. 5.
    Kurnin IV, Kayumov AA, Muradymov MZ, Krasnov NV, Samokish AV (2013) Coupling of liquid chromatograph with ion-mobility spectrometer. Int J Ion Mobil Spectrom 16(3):169–176CrossRefGoogle Scholar
  6. 6.
    Schneider BB, Douglas DJ, Chen DDY (2002) An atmospheric pressure ion lens that improves nebulizer assisted electrospray ion sources. J Am Soc Mass Spectrom 13(8):906–913CrossRefGoogle Scholar
  7. 7.
    Xu X, Zhai J, Shui W, Xu G, Yang P (2004) Adding auxiliary electrode – an effective method for enhancing signal-to-noise ratio in nanospray mass spectrometry. Anal Lett 37(13):2711–2720CrossRefGoogle Scholar
  8. 8.
    Yamashita M, Fenn JB (1984) Negative ion production with the electrospray ion source. J Phys Chem 88(20):4671–4675CrossRefGoogle Scholar
  9. 9.
    Manura D, Dahl DA (2006) SIMION™ 8.0 User Manual, Sci. Instrument Services Inc., Idaho Nat. LabGoogle Scholar
  10. 10.
    AB Sciex Pte Ltd (2018) Turbo V™ ion source.
  11. 11.
    Shimadzu Corp. (2018) Liquid Chromatograph Mass Spectrometer – 8060.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • A.N. Arseniev
    • 1
  • I.V. Kurnin
    • 1
    Email author
  • N.V. Krasnov
    • 1
  • M.Z. Muradymov
    • 1
  • T.V. Pomozov
    • 1
  • M.I. Yavor
    • 1
  • M.N. Krasnov
    • 2
  1. 1.Institute for Analytical Instrumentation of the Russian Academy of ScienceSaint PetersburgRussia
  2. 2.Biotechnology Analytical Instruments Ltd.Saint-PetersburgRussia

Personalised recommendations