Advertisement

Calibration of complex mixtures in one sweep

  • Igor Bergen
  • Sascha Liedtke
  • Stefanie Güssgen
  • Oliver Kayser
  • Chandrasekhara Hariharan
  • Carolin Drees
  • Wolfgang Vautz
Original Research
  • 48 Downloads

Abstract

The calibration of extremely complex humid gas-phase mixtures – often required in ion mobility spectrometry applications – is challenging, even when high-performance calibration gas generators such as HovaCAL® are applied. Here, we describe an approach to develop and apply mixtures of VOCs in one channel of such a calibration gas generator for a complex calibration in one sweep. As an example, a mixture of so-called “Signs of Life” – compounds available in the exhaled breath and/or in the sweat of everybody was used. The procedure of developing the appropriate mixture and the results of a successful calibration of a GC-ion mobility spectrometer are presented.

Keywords

Calibration Gas-phase Complex mixture Human scent Hidden persons Calibration gas generator 

Notes

Acknowledgments

The financial support of the Bundesministerium für Bildung und Forschung and the Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen is gratefully acknowledged. This research was funded by the European Union as part of the project “Detection of olfactory traces by orthogonal gas identification technologies” (DOGGIES), a collaborative project (No. 285446) funded under call identifier FP7-SEC-20011-1, which is part of the FP7 Program. Furthermore, the dedicated support of the workshops at ISAS, Dortmund, Germany and CNR-IMM, Bologna, Italy was indispensable for the success of the present study. Moreover, the steady and easy-going support by IAS, namely Martin Schmäh and his stuff is gratefully acknowledged.

Author’s contributions

All authors significantly contributed and have given approval to the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

References

  1. 1.
    Sheibani A, Haghpazir N (2014) Application of ion mobility spectrometry for the determination of tramadol in biological samples. J Food Drug Anal 22(4):500–504CrossRefGoogle Scholar
  2. 2.
    Guharay SK, Dwivedi P, Hill HH (2008) Ion mobility spectrometry: ion source development and applications in physical and biological sciences. IEEE T PLASMA SCI 36(4):1458–1470CrossRefGoogle Scholar
  3. 3.
    Vautz W, Baumbach JI (2008) Exemplar application of multi-capillary column ion mobility spectrometry for biological and medical purpose. Int J Ion Mobil Spectrom 11(1–4):35–44CrossRefGoogle Scholar
  4. 4.
    Perl T, Jünger M, Vautz W, Nolte J, Kuhns M, Borg-von Zepelin M, Quintel M (2011) Detection of characteristic metabolites of Aspergillus fumigatus and Candida species using ion mobility spectrometry – metabolic profiling by volatile organic compounds. Mycoses 54(6):e828–e837CrossRefGoogle Scholar
  5. 5.
    Jünger M, Vautz W, Kuhns M, Hofmann L, Ulbricht S, Baumbach JI, Quintel M, Perl T (2012) Ion mobility spectrometry for microbial volatile organic compounds: a new identification tool for human pathogenic bacteria. Appl Microbiol Biotechnol 93(6):2603–2614.  https://doi.org/10.1007/s00253-012-3924-4 CrossRefGoogle Scholar
  6. 6.
    Chouinard CD, Wei MS, Beekman CR, Kemperman RHJ, Yost RA (2015) Ion mobility in clinical analysis: current progress and future perspectives. Clin Chem 62(1):124–133CrossRefGoogle Scholar
  7. 7.
    Sobel JD, Karpas Z, Lorber A (2012) Diagnosing vaginal infections through measurement of biogenic amines by ion mobility spectrometry. Eur J Obstet Gynecol Reprod Biol 163(1):81–84CrossRefGoogle Scholar
  8. 8.
    Baumbach JI (2009) Ion mobility spectrometry coupled with multi-capillary columns for metabolic profiling of human breath. J Breath Res 3(3):034001 (16pp)CrossRefGoogle Scholar
  9. 9.
    Vautz W, Nolte J, Fobbe R, Baumbach JI (2009) Breath analysis— performance and potential of ion mobility spectrometry. J Breath Res 3(3):036004 (8pp)CrossRefGoogle Scholar
  10. 10.
    Pagonas N, Vautz W, Seifert L, Slodzinski R, Jankowski J, Zidek W, Westhoff TH (2012) Volatile organic compounds in uremia. PLoS ONE 7(9):e46258CrossRefGoogle Scholar
  11. 11.
    Perl T, Carstens E, Hirn A, Quintel M, Vautz W, Nolte J, Jünger M (2009) Determination of serum propofol concentrations by breath analysis using ion mobility spectrometry. Br J Anaesth 103(6):822–827CrossRefGoogle Scholar
  12. 12.
    Vautz W, Slodzynski R, Hariharan C, Seifert L, Nolte J, Fobbe R, Sielemann S, Lao BC, Huo R, Thomas CLP, Hildebrand L (2013) Detection of metabolites of trapped humans using ion mobility spectrometry coupled with gas chromatography. Anal Chem 85(4):2135–2142.  https://doi.org/10.1021/ac302752f CrossRefGoogle Scholar
  13. 13.
    Baumbach JI (2006) Process analysis using ion mobility spectrometry. Anal Bioanal Chem 384(5):1059–1070aCrossRefGoogle Scholar
  14. 14.
    Garrido-Delgado R, Muñoz-Pérez ME, Arce L (2018) Detection of adulteration in extra virgin olive oils by using UV-IMS and chemometric analysis. Food Control 85:292–299CrossRefGoogle Scholar
  15. 15.
    Arroyo-Manzanares N, Martín-Gómez A, Jurado-Campos N, Garrido-Delgado R, Arce C, Arce L (2018) Target vs spectral fingerprint data analysis of Iberian ham samples for avoiding labelling fraud using headspace – gas chromatography–ion mobility spectrometry. Food Chem 246:65–73CrossRefGoogle Scholar
  16. 16.
    Alcudia-León MC, Sánchez-Parra M, Lucena R, Cárdenas S (2017) Determination of the three main components of the grapevine moth pest pheromone in grape-related samples by headspace-gas chromatography-mass spectrometry. Separations 4(4):31–37CrossRefGoogle Scholar
  17. 17.
    Karpas Z (2013) Applications of ion mobility spectrometry (IMS) in the field of foodomics. Food Res Int 54(1):1146–1151CrossRefGoogle Scholar
  18. 18.
    Eiceman GA, Karpas Z, Hill HH Jr (2016) Ion mobility spectrometry, third edition. CRC Press, Taylor & Francis GroupGoogle Scholar
  19. 19.
    Li Y, Täffner T, Bischoff M, Niemeyer B (2012) Test gas generation from pure liquids: an application-oriented overview of methods in a nutshell. Int J Chem Eng 2012:1–6.  https://doi.org/10.1155/2012/417029 CrossRefGoogle Scholar
  20. 20.
    Murphy DW, Fahey DW (1987) Mathematical treatment of the wall loss of a trace species in denuder and catalytic converter tubes. Anal Chem 59(23):2753–2759CrossRefGoogle Scholar
  21. 21.
    Vautz W, Schmäh M (2009) HovaCAL®-a generator for multi-component humid calibration gases. Int J Ion Mobil Spectrom 12(4):139–147.  https://doi.org/10.1007/s12127-009-0030-0 CrossRefGoogle Scholar
  22. 22.
    Vautz W, Bödeker B, Baumbach JI, Bader S, Westhoff M, Perl T (2009) An implementable approach to obtain reproducible reduced ion mobility. Int J Ion Mobil Spectrom 12(2):47–57.  https://doi.org/10.1007/s12127-009-0018-9 CrossRefGoogle Scholar
  23. 23.
    Mochalski P, Rudnicka J, Agapiou A, Statheropoulos M, Amann A, Buszewski B (2013) Near real-time VOCs analysis using an aspiration ion mobility spectrometer. J Breath Res 7(2):1–11CrossRefGoogle Scholar
  24. 24.
    Mochalski P, Unterkofler K, Teschl G, Amann A (2015) Potential of volatile organic compounds as markers of entrapped humans for use in urban search-and-rescue operations. Trends Anal Chem 68:88–106CrossRefGoogle Scholar
  25. 25.
    Agapiou A, Amann A, Mochalski P, Statheropoulos M, Thomas CLP (2015) Trace detection of endogenous human volatile organic compounds for search, rescue and emergency applications. Trends Anal Chem 66:158–175CrossRefGoogle Scholar
  26. 26.
    Ulanowska A, Ligor M, Amann A, Buszewski B (2008) Determination of volatile organic compounds in exhaled breath by ion mobility spectrometry. Chem Anal 53:953–965Google Scholar
  27. 27.
    P.J. Linstrom, W.G. Mallard (eds.): NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899,  https://doi.org/10.18434/T4D303, (retrieved June 5, 2018)
  28. 28.
    Karlberg A-T, Magnusson K, Nilsson U (1992) Air oxidation of d-limonene (the citrus solvent) creates potent allergens. Contact Dermatitis 26(5):332–340CrossRefGoogle Scholar
  29. 29.
    Martín-Luengo MA, Yates M, Martínez Domingo MJ, Casal B, Iglesias M, Esteban M, Ruiz-Hitzky E (2008) Synthesis of p-cymene from limonene, a renewable feedstock. Appl Catal B Environ 81(3–4):218–224CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.TU Dortmund, Technical BiochemistryDortmundGermany
  2. 2.ION-GAS GmbH, Konrad-Adenauer-Allee 11DortmundGermany
  3. 3.Leibniz-Institut für Analytische Wissenschaften - ISAS - e.VDortmundGermany
  4. 4.Eye on Air B.V., The GalleryEnschedeNetherlands

Personalised recommendations