Journal of Labor Research

, Volume 39, Issue 3, pp 329–353 | Cite as

Physical Work Intensity and the Split Workday: Theory and Evidence from Spain

  • Jorge González ChapelaEmail author


This study uses a job-design model and the 2002–2003 Spanish Time Use Survey to explore the existence of a previously overlooked relationship between physical work intensity and the split workday. The theoretical model developed predicts that the incidence of working split shifts may increase with physical work intensity if and only if the degree of recovery allowed by the mid-workday break is directly proportional to the physical load of the work done. Occupation-specific estimates of energy expenditure are constructed for Spain which permit investigating empirically the relationship between physical work intensity and the split workday.


Split workday Work recovery Metabolic equivalent value Spanish time use survey 

JEL Classification

J21 J22 J81 



My thanks to an anonymous referee, Associate Editor Shin-Yi Chou, Carme Molinero, Phil Tucker, and seminar participants at the 18th INFER Annual Conference for helpful comments and suggestions. Financial support from research project CREVALOR, funded by the Diputación General de Aragón and the European Social Fund, is gratefully acknowledged.

Compliance with Ethical Standards

Conflict of Interest

The author declares no conflict of interest.


  1. Alluisi EA, Morgan BB Jr (1982) Temporal factors in human performance and productivity. In: Alluisi EA, Fleishman EA (eds) Human Performance and Productivity: Stress and Performance Effectiveness. Lawrence Erlbaum, Hillsdale, pp 165–247Google Scholar
  2. Amuedo-Dorantes C, de la Rica S (2009) The timing of work and work-family conflicts in Spain: Who has a split work schedule and why? IZA Discussion Paper No. 4542Google Scholar
  3. Archer E, Shook RP, Thomas DM, Church TS, Katzmarzyk PT, Hébert JR, McIver KL, Hand GA, Lavie CJ, Blair SN (2013) 45-year trends in women’s use of time and household management energy expenditure. PLoS ONE 8:1–8CrossRefGoogle Scholar
  4. ARHOE (2013) Horarios, flexibilidad y productividad. VII Congreso Nacional para Racionalizar los Horarios Españoles. Asociación para la Racionalización de los Horarios EspañolesGoogle Scholar
  5. Arlinghaus A, Lombardi DA, Courtney TK, Christiani DC, Folkard S, Perry MJ (2012) The effect of rest breaks on time to injury – a study on work-related ladder-fall injuries in the United States. Scand J Work Environ Health 38:560–567CrossRefGoogle Scholar
  6. Barbería JL (2014) Spain – A great place to live, a terrible place to work? El País. Retrieved from
  7. Blevins JR, Khan S (2013a) Local NLLS estimation of semi-parametric binary choice models. Econ J 16:135–160Google Scholar
  8. Blevins JR, Khan S (2013b) Distribution-free estimation of heteroskedastic binary response models in Stata. Stata J 13:588–602Google Scholar
  9. Booth A, Ravallion M (1993) Employment and length of the working week in a unionized economy in which hours of work influence productivity. Econ Rec 69:428–436CrossRefGoogle Scholar
  10. Brachet T, David G, Drechsler AM (2012) The effect of shift structure on performance. Am Econ J: Appl Econ 4:219–246Google Scholar
  11. Bryan ML (2007) Workers, workplaces and working hours. Br J Ind Relat 45:735–759CrossRefGoogle Scholar
  12. Bryson A, Forth J (2007) Are there day of the week productivity effects? Manpower human resources Laboratory dp004. Centre for Economic Performance. London School of EconomicsGoogle Scholar
  13. Cameron AC, Miller DL (2015) A practitioner’s guide to cluster robust inference. J Hum Resour 50:317–372CrossRefGoogle Scholar
  14. Cameron AC, Gelbach JB, Miller DL (2011) Robust inference with multiway clustering. J Bus Econ Stat 29:238–249CrossRefGoogle Scholar
  15. Chapman SJ (1909) Hours of labor. Econ J 19:353–373CrossRefGoogle Scholar
  16. Colman G, Dave D (2013) Exercise, physical activity, and exertion over the business cycle. Soc Sci Med 93:11–20CrossRefGoogle Scholar
  17. Del Boca D, Flinn C, Wiswall M (2014) Household choices and child development. Rev Econ Stud 81:137–185CrossRefGoogle Scholar
  18. Dragone D (2009) I am getting tired: Effort and fatigue in intertemporal decision-making. J Econ Psychol 30:552–562CrossRefGoogle Scholar
  19. Eurostat (2004) Guidelines on harmonized European time use surveys. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  20. García Sánchez A, Vázquez Méndez MM (2005) The timing of work in a general equilibrium model with shiftwork. Investig Econ 29:149–179Google Scholar
  21. Golden L (2012) The effects of working time on productivity and firm performance: a research synthesis paper. Conditions of Work and Employment Series No. 33. International Labour OfficeGoogle Scholar
  22. Gommans FG, Jansen NWH, Mackey MG, Stynen D, de Grip A, Kant I (2016) The impact of physical work demands on need for recovery, employment status, retirement intentions, and ability to extend working careers. A longitudinal study among older workers. J Occup Environ Med 58(4):E140–E151CrossRefGoogle Scholar
  23. González Chapela J (2015) Split or straight? Evidence of the effects of work schedules on workers’ well-being, time use, and productivity. SERIEs 6:153–177CrossRefGoogle Scholar
  24. Gourieroux C, Monfort A, Trognon A (1984) Pseudo maximum likelihood methods: theory. Econometrica 52:681–700CrossRefGoogle Scholar
  25. Gracia P, Kalmijn M (2016) Parents’ family time and work schedules: The split-shift schedule in Spain. J Marriage Fam 78(2):401–415CrossRefGoogle Scholar
  26. Guner N, Kaya E, Sánchez-Marcos V (2014) Gender gaps in Spain: Policies and outcomes over the last three decades. SERIEs 5:61–103CrossRefGoogle Scholar
  27. Gutiérrez-Domènech M (2010) Parental employment and time with children in Spain. Rev Econ Househ 8:371–391CrossRefGoogle Scholar
  28. Hamermesh DS (1996) Workdays, Workhours, and Work Schedules: Evidence for the United States and Germany. W. E. Upjohn Institute, KalamazooCrossRefGoogle Scholar
  29. Hamermesh DS (1999) The timing of work over time. Econ J 109:37–66CrossRefGoogle Scholar
  30. Hamermesh DS, Stancanelli E (2015) Long workweeks and strange hours. Ind Labor Relat Rev 68:1007–1018CrossRefGoogle Scholar
  31. Hamermesh DS, Knowles Myers C, Pocock ML (2008) Cues for timing and coordination: latitude, Letterman, and longitude. J Labor Econ 26:223–246CrossRefGoogle Scholar
  32. Hansen CB (2007) Asymptotic properties of a robust variance matrix estimator for panel data when T is large. J Econ 141:597–620CrossRefGoogle Scholar
  33. Hersch J (1998) Compensating differentials for gender-specific job injury risks. Am Econ Rev 88:598–607Google Scholar
  34. INSHT (2003) V Encuesta Nacional de Condiciones de Trabajo. Instituto Nacional de Seguridad e Higiene en el Trabajo. Ministerio de Trabajo y Asuntos SocialesGoogle Scholar
  35. INSHT (2011) VII Encuesta Nacional de Condiciones de Trabajo. Instituto Nacional de Seguridad e Higiene en el Trabajo. Ministerio de Empleo y Seguridad SocialGoogle Scholar
  36. Instituto Nacional de Estadística (1994) Clasificación Nacional de Ocupaciones 1994 (CNO-94). Instituto Nacional de Estadística, MadridGoogle Scholar
  37. Jansen NWH, Kant I, van den Brandt PA (2002) Need for recovery in the working population: Description and associations with fatigue and psychological distress. Int J Behav Med 9(4):322–340CrossRefGoogle Scholar
  38. Jirjahn U (2008) On the determinants of shift work and overtime work: Evidence from German establishment data. Br J Ind Relat 46:133–168CrossRefGoogle Scholar
  39. Kostiuk PF (1990) Compensating differentials for shift work. J Polit Econ 98:1054–1075CrossRefGoogle Scholar
  40. Lombardi DA, Jin K, Courtney TK, Arlinghaus A, Folkard S, Liang Y, Perry MJ (2014) The effects of rest breaks, work shift start time, and sleep on the onset of severe injury among workers in the People’s Republic of China. Scand J Work Environ Health 40:146–155CrossRefGoogle Scholar
  41. Marchetti DJ, Nucci F (2014) Effort and hours over the business cycle. In: Paganetto L (ed) Wealth, income inequalities, and demography. Springer International Publishing, Cham, pp 229–249Google Scholar
  42. Mayshar J, Halevy Y (1997) Shiftwork. J Labor Econ 15:S198–S222CrossRefGoogle Scholar
  43. McMenamin TM (2007) A time to work: Recent trends in shift work and flexible schedules. Mon Labor Rev 130:3–15Google Scholar
  44. Montañés Bernal A (Dir.) (2011) Tipos de Jornada y Productividad del Trabajo. Colección Estudios. Consejo Económico y Social de AragónGoogle Scholar
  45. Montoye HJ, Kemper HCG, Saris WHM, Washburn RA (1996) Measuring physical activity and energy expenditure. Human Kinetics, ChampaignGoogle Scholar
  46. Nocetti D (2008) Industrial fatigue Redux. Econ Lett 99:286–289CrossRefGoogle Scholar
  47. Pagan A, Vella F (1989) Diagnostic tests for models based on individual data: A survey. J Appl Econ 4:S29–S59CrossRefGoogle Scholar
  48. Presser HB (1988) Shift work and child care among young dual-earner American parents. J Marriage Fam 50:133–148CrossRefGoogle Scholar
  49. Presser HB (1994) Employment schedules among dual-earner spouses and the division of household labor by gender. Am Sociol Rev 59:348–364CrossRefGoogle Scholar
  50. Ramsbottom JW (1914) Suggestions for an inquiry into industrial fatigue. Econ J 24:393–402CrossRefGoogle Scholar
  51. Rapoport B, Le Bourdais C (2008) Parental time and working schedules. J Popul Econ 21:903–932CrossRefGoogle Scholar
  52. Robinson JP (1985) The validity and reliability of diaries versus alternative time use measures. In: Juster FT, Stafford FP (eds) Time, Goods, and Well-Being. Institute for Social Research, University of Michigan, Ann Arbor, pp 33–62Google Scholar
  53. Rosen S (1986) The theory of equalizing differences. In: Ashenfelter O, Layard R (eds) Handbook of labor economics, vol 1. Elsevier Science Publishers BV, Amsterdam, pp 642–692Google Scholar
  54. Scopp TS (2003) The relationship between the 1990 Census and Census 2000 industry and occupation classification systems. Technical Paper No. 65. U.S. Census BureauGoogle Scholar
  55. Sen B (2012) Is there an association between gasoline prices and physical activity? Evidence from American time use data. J Policy Anal Manage 31:338–366CrossRefGoogle Scholar
  56. Sluiter JK, de Croon EM, Meijman TF, Frings-Dresen MHW (2003) Need for recovery from work related fatigue and its role in the development and prediction of subjective health complaints. Occup Environ Med 60:i62–i70CrossRefGoogle Scholar
  57. Stapleton DC, Young DJ (1984) Censored normal regression with measurement error on the dependent variable. Econometrica 52:737–760CrossRefGoogle Scholar
  58. Stewart J (2013) Tobit or not Tobit? J Econ Soc Meas 38:263–290Google Scholar
  59. Trougakos JP, Hideg I (2009) Momentary work recovery: The role of within-day work breaks. In: Sonnentag S, Perrewé PR, Ganster DC (eds) Current perspectives on job-stress recovery: Research in occupational stress and well being, vol 7. Emerald Group Publishing Limited, Bingley, pp 37–84Google Scholar
  60. Trougakos JP, Beal DJ, Green SG, Weiss HM (2008) Making the break count: An episodic examination of recovery activities, emotional experiences, and positive affective displays. Acad Manag J 51:131–146CrossRefGoogle Scholar
  61. Tucker P (2003) The impact of rest breaks upon accident risk, fatigue and performance: a review. Work Stress 17:123–137CrossRefGoogle Scholar
  62. Tudor-Locke C, Washington TL, Ainsworth BE, Troiano RP (2009) Linking the American Time Use Survey (ATUS) and the Compendium of Physical Activities: Methods and rationale. J Phys Act Health 6:347–353CrossRefGoogle Scholar
  63. Tudor-Locke C, Ainsworth BE, Washington TL, Troiano R (2011) Assigning metabolic equivalent values to the 2002 census occupational classification system. J Phys Act Health 8:581–586CrossRefGoogle Scholar
  64. Weiss Y (1996) Synchronization of work schedules. Int Econ Rev 37:157–179CrossRefGoogle Scholar
  65. Williams C (2008) Work-life balance of shift workers. Perspect Labour Income 20:15–26Google Scholar
  66. Winston GC (1982) The Timing of Economic Activities. Cambridge University Press, CambridgeGoogle Scholar
  67. Wooldridge JM (2010) Econometric Analysis of Cross Section and Panel Data, 2nd edn. The MIT Press, CambridgeGoogle Scholar
  68. Zavodny M (2015) Do immigrants work in worse jobs than U.S. natives? Evidence from California. Ind Relat 54:276–293CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro Universitario de la Defensa de ZaragozaZaragozaSpain

Personalised recommendations