Advertisement

Soft Tissue Special Issue: Skeletal Muscle Tumors: A Clinicopathological Review

  • Kenichi Kohashi
  • Izumi Kinoshita
  • Yoshinao OdaEmail author
Special Issue: Soft Tissue

Abstract

Skeletal muscle tumors are classified into rhabdomyoma and embryonal, alveolar, spindle cell/sclerosing and pleomorphic rhabdomyosarcoma according to WHO classifications of tumors. These tumors arise mostly in the head and neck and, in childhood, represent the largest subset of soft tissue tumors. Although these skeletal muscle tumors show common immunoexpression of two myogenic regulatory factors, MyoD1 and myogenin, their molecular biological backgrounds are quite different. Therefore, treatment regimens vary a great deal depending on the histological subtype. Histopathologically, rhabdomyoma is characterized by well-demarcated lesions with no invasion of the surrounding tissue. Embryonal rhabdomyosarcoma is composed of primitive mesenchymal cells in various stages of myogenesis and shows heterogeneous nuclear staining for myogenin. Alveolar rhabdomyosarcoma, on the other hand, shows a proliferation of uniform primitive round cells arranged in alveolar patterns. The tumor cells at the periphery of alveolar structures adhere in a single layer to the fibrous septa. Diffuse and strong nuclear immunoexpression for myogenin is observed. In genetic backgrounds, almost all alveolar rhabdomyosarcomas contain a characteristic fusion gene such as PAX3/7-FOXO1. Spindle cell/sclerosing rhabdomyosarcoma is characterized by fascicularly arranged spindle-shaped cells or dense hyalinized collagenous matrix. NCOR2- or VGLL2-related gene fusions or MYOD1 (p.L122R) mutation is commonly recognized. Epithelioid rhabdomyosarcoma is a rare variant of rhabdomyosarcoma that shows a proliferation of epithelioid tumor cells having large vesicular nuclei, prominent nucleoli, and amphophilic to eosinophilic cytoplasm arranged in sheets. As these characteristic histological and molecular features are present in each subtype, it is possible to diagnose skeletal muscle tumors accurately.

Keywords

Rhabdomyoma Embryonal rhabdomyosarcoma Alveolar rhabdomyosarcoma Spindle cell/sclerosing rhabdomyosarcoma Head and neck 

Notes

Acknowledgements

The English used in this manuscript was revised by KN International (https://www.kninter.com/).

References

  1. 1.
    Ognjanovic S, Linabery AM, Charbonneau B, Ross JA. Trends in childhood rhabdomyosarcoma incidence and survival in the United States, 1975–2005. Cancer. 2009;115:4218–26.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Hosoi I. Current status of treatment for pediatric rhabdomyosarcoma in the USA and Japan. Pediatr Int. 2016;58:81–7.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Allevi F, Rabbiosi D, Colletti G, Felisati G, Rezzonico A, Ronchi P, Biglioli F. Extensive rhabdomyoma of the head and neck region: a case report and a literature review. Minerva Stomatol. 2013;62:387–95.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Kapadia SB, Meis JM, Frisman DM, Ellis GL, Heffner DK. Fetal rhabdomyoma of the head and neck: a clinicopathologic and immunophenotypic study of 24 cases. Hum Pathol. 1993;24:754–65.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Goldblum JR, Folpe AL, Weiss SW. Rhabdomyoma. In: Soft tissue tumors. 6th ed. Amsterdam: Elservier; 2014.Google Scholar
  6. 6.
    de Trey LA, Schmid S, Huber GF. Multifocal adult rhabdomyoma of the head and neck manifestation in 7 locations and review of the literature. Case Rep Otolaryngol. 2013;2013:758416.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Lapner PC, Chou S, Jimenez C. Perianal fetal rhabdomyoma: case report. Pediatr Surg Int. 1997;12:544–7.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Davies B, Noh P, Smaldone MC, Ranganathan S, Docimo SG. Paratesticular rhabdomyoma in a young adult: case study and review of the literature. J Pediatr Surg. 2007;42:E5–7.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Walterhouse DO, Pappo AS, Meza JL, Breneman JC, Hayes-Jordan AA, Parham DM, Cripe TP, Anderson JR, Meyer WH, Hawkins DS. Shorter-duration therapy using vincristine, dactinomycin, and lower-dose cyclophosphamide with or without radiotherapy for patients with newly diagnosed low-risk rhabdomyosarcoma: a report from the Soft Tissue Sarcoma Committee of the Children's Oncology Group. J Clin Oncol. 2014;32:3547–52.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Hawkins DS, Chi YY, Anderson JR, Tian J, Arndt CAS, Bomgaars L, Donaldson SS, Hayes-Jordan A, Mascarenhas L, McCarville MB, McCune JS, McCowage G, Million L, Morris CD, Parham DM, Rodeberg DA, Rudzinski ER, Shnorhavorian M, Spunt SL, Skapek SX, Teot LA, Wolden S, Yock TI, Meyer WH. Addition of Vincristine and Irinotecan to Vincristine, Dactinomycin, and Cyclophosphamide Does Not Improve Outcome for Intermediate-Risk Rhabdomyosarcoma: A Report From the Children's Oncology Group. J Clin Oncol. 2018;36:2770–7.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Hostein I, Andraud-Fregeville M, Guillou L, Terrier-Lacombe MJ, Deminière C, Ranchère D, Lussan C, Longavenne E, Bui NB, Delattre O, Coindre JM. Rhabdomyosarcoma: value of myogenin expression analysis and molecular testing in diagnosing the alveolar subtype: an analysis of 109 paraffin-embedded specimens. Cancer. 2004;101:2817–24.PubMedCrossRefGoogle Scholar
  12. 12.
    Nishimura R, Takita J, Sato-Otsubo A, Kato M, Koh K, Hanada R, Tanaka Y, Kato K, Maeda D, Fukayama M, Sanada M, Hayashi Y, Ogawa S. Characterization of genetic lesions in rhabdomyosarcoma using a high-density single nucleotide polymorphism array. Cancer Sci. 2013;104:856–64.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Liu C, Li D, Jiang J, Hu J, Zhang W, Chen Y, Cui X, Qi Y, Zou H, Zhang W, Li F. Analysis of molecular cytogenetic alteration in rhabdomyosarcoma by array comparative genomic hybridization. PLoS ONE. 2014;9:e94924.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Kohashi K, Oda Y, Yamamoto H, Tamiya S, Takahira T, Takahashi Y, Tajiri T, Taguchi T, Suita S, Tsuneyoshi M. Alterations of RB1 gene in embryonal and alveolar rhabdomyosarcoma: special reference to utility of pRB immunoreactivity in differential diagnosis of rhabdomyosarcoma subtype. J Cancer Res Clin Oncol. 2008;134:1097–103.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Seki M, Nishimura R, Yoshida K, Shimamura T, Shiraishi Y, Sato Y, Kato M, Chiba K, Tanaka H, Hoshino N, Nagae G, Shiozawa Y, Okuno Y, Hosoi H, Tanaka Y, Okita H, Miyachi M, Souzaki R, Taguchi T, Koh K, Hanada R, Kato K, Nomura Y, Akiyama M, Oka A, Igarashi T, Miyano S, Aburatani H, Hayashi Y, Ogawa S, Takita J. Integrated genetic and epigenetic analysis defines novel molecular subgroups in rhabdomyosarcoma. Nat Commun. 2015;3(6):7557.CrossRefGoogle Scholar
  16. 16.
    Hung YP, Lee JP, Bellizzi AM, Hornick JL. PHOX2B reliably distinguishes neuroblastoma among small round blue cell tumours. Histopathology. 2017;71:786–94.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Takemoto J, Kuda M, Kohashi K, Yamada Y, Koga Y, Kinoshita I, Souzaki R, Taguchi T, Oda Y. HuC/D expression in small round cell tumors and neuroendocrine tumors: a useful tool for distinguishing neuroblastoma from childhood small round cell tumors. Hum Pathol. 2019;85:162–7.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Beckwith JB, Palmer NF. Histopathology and prognosis of Wilms tumors: results from the First National Wilms' Tumor Study. Cancer. 1978;41:1937–48.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Kohashi K, Oda Y, Yamamoto H, Tamiya S, Izumi T, Ohta S, Taguchi T, Suita S, Tsuneyoshi M. Highly aggressive behavior of malignant rhabdoid tumor: a special reference to SMARCB1/INI1 gene alterations using molecular genetic analysis including quantitative real-time PCR. J Cancer Res Clin Oncol. 2007;133:817–24.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Kohashi K, Izumi T, Oda Y, Yamamoto H, Tamiya S, Taguchi T, Iwamoto Y, Hasegawa T, Tsuneyoshi M. Infrequent SMARCB1/INI1 gene alteration in epithelioid sarcoma: a useful tool in distinguishing epithelioid sarcoma from malignant rhabdoid tumor. Hum Pathol. 2009;40:349–55.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Kohashi K, Oda Y, Yamamoto H, Tamiya S, Matono H, Iwamoto Y, Taguchi T, Tsuneyoshi M. Reduced expression of SMARCB1/INI1 protein in synovial sarcoma. Mod Pathol. 2010;23:981–90.PubMedCrossRefGoogle Scholar
  22. 22.
    Kohashi K, Nakatsura T, Kinoshita Y, Yamamoto H, Yamada Y, Tajiri T, Taguchi T, Iwamoto Y, Oda Y. Glypican 3 expression in tumors with loss of SMARCB1/INI1 protein expression. Hum Pathol. 2013;44:526–33.PubMedCrossRefGoogle Scholar
  23. 23.
    Kohashi K, Yamamoto H, Kumagai R, Yamada Y, Hotokebuchi Y, Taguchi T, Iwamoto Y, Oda Y. Differential microRNA expression profiles between malignant rhabdoid tumor and epithelioid sarcoma: miR193a-5p is suggested to downregulate SMARCB1 mRNA expression. Mod Pathol. 2014;27:832–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Kohashi K, Yamada Y, Hotokebuchi Y, Yamamoto H, Taguchi T, Iwamoto Y, Oda Y. ERG and SALL4 expressions in SMARCB1/INI1-deficient tumors: a useful tool for distinguishing epithelioid sarcoma from malignant rhabdoid tumor. Hum Pathol. 2015;46:225–30.PubMedCrossRefGoogle Scholar
  25. 25.
    Kohashi K, Tanaka Y, Kishimoto H, Yamamoto H, Yamada Y, Taguchi T, Iwamoto Y, Oda Y. Reclassification of rhabdoid tumor and pediatric undifferentiated/unclassified sarcoma with complete loss of SMARCB1/INI1 protein expression: three subtypes of rhabdoid tumor according to their histological features. Mod Pathol. 2016;29:1232–42.PubMedCrossRefGoogle Scholar
  26. 26.
    Kohashi K, Oda Y. Oncogenic roles of SMARCB1/INI1 and its deficient tumors. Cancer Sci. 2017;108:547–52.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Hays DM, Newton W Jr, Soule EH, Foulkes MA, Raney RB, Tefft M, Ragab A, Maurer HM. Mortality among children with rhabdomyosarcomas of the alveolar histologic subtype. J Pediatr Surg. 1983;18:412–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Arnold MA, Anderson JR, Gastier-Foster JM, Barr FG, Skapek SX, Hawkins DS, Raney RB Jr, Parham DM, Teot LA, Rudzinski ER, Walterhouse DO. Histology, Fusion Status, and Outcome in Alveolar Rhabdomyosarcoma with Low-Risk Clinical Features: A Report from the Children's Oncology Group. Pediatr Blood Cancer. 2016;63:634–9.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Thompson LDR, Jo VY, Agaimy A, Llombart-Bosch A, Morales GN, Machado I, Flucke U, Wakely PE Jr, Miettinen M, Bishop JA. Sinonasal tract alveolar rhabdomyosarcoma in adults: a clinicopathologic and immunophenotypic study of fifty-two cases with emphasis on epithelial immunoreactivity. Head Neck Pathol. 2018;12:181–92.PubMedCrossRefGoogle Scholar
  30. 30.
    Rooper LM, Bishop JA, Westra WH. INSM1 is a sensitive and specific marker of neuroendocrine differentiation in head and neck tumors. Am J Surg Pathol. 2018;42:665–71.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Stegmaier S, Poremba C, Schaefer KL, Leuschner I, Kazanowska B, Békássy AN, Bielack SS, Klingebiel T, Koscielniak E. Prognostic value of PAX-FKHR fusion status in alveolar rhabdomyosarcoma: a report from the cooperative soft tissue sarcoma study group (CWS). Pediatr Blood Cancer. 2011;57:406–14.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Skapek SX, Anderson J, Barr FG, Bridge JA, Gastier-Foster JM, Parham DM, Rudzinski ER, Triche T, Hawkins DS. PAX-FOXO1 fusion status drives unfavorable outcome for children with rhabdomyosarcoma: a children's oncology group report. Pediatr Blood Cancer. 2013;60:1411–7.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Barr FG, Qualman SJ, Macris MH, Melnyk N, Lawlor ER, Strzelecki DM, Triche TJ, Bridge JA, Sorensen PH. Genetic heterogeneity in the alveolar rhabdomyosarcoma subset without typical gene fusions. Cancer Res. 2002;62:4704–10.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Sumegi J, Streblow R, Frayer RW, Dal Cin P, Rosenberg A, Meloni-Ehrig A, Bridge JA. Recurrent t(2;2) and t(2;8) translocations in rhabdomyosarcoma without the canonical PAX-FOXO1 fuse PAX3 to members of the nuclear receptor transcriptional coactivator family. Genes Chromosomes Cancer. 2010;49:224–36.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Liu J, Guzman MA, Pezanowski D, Patel D, Hauptman J, Keisling M, Hou SJ, Papenhausen PR, Pascasio JM, Punnett HH, Halligan GE, de Chadarévian JP. FOXO1-FGFR1 fusion and amplification in a solid variant of alveolar rhabdomyosarcoma. Mod Pathol. 2011;24:1327–35.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Shern JF, Chen L, Chmielecki J, Wei JS, Patidar R, Rosenberg M, Ambrogio L, Auclair D, Wang J, Song YK, Tolman C, Hurd L, Liao H, Zhang S, Bogen D, Brohl AS, Sindiri S, Catchpoole D, Badgett T, Getz G, Mora J, Anderson JR, Skapek SX, Barr FG, Meyerson M, Hawkins DS, Khan J. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov. 2014;4:216–31.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Davicioni E, Anderson MJ, Finckenstein FG, Lynch JC, Qualman SJ, Shimada H, Schofield DE, Buckley JD, Meyer WH, Sorensen PH, Triche TJ. Molecular classification of rhabdomyosarcoma–genotypic and phenotypic determinants of diagnosis: a report from the Children's Oncology Group. Am J Pathol. 2009;174:550–64.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Wang NP, Marx J, McNutt MA, Rutledge JC, Gown AM. Expression of myogenic regulatory proteins (myogenin and MyoD1) in small blue round cell tumors of childhood. Am J Pathol. 1995;147:1799–810.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Cessna MH, Zhou H, Perkins SL, Tripp SR, Layfield L, Daines C, Coffin CM. Are myogenin and myoD1 expression specific for rhabdomyosarcoma? A study of 150 cases, with emphasis on spindle cell mimics. Am J Surg Pathol. 2001;25:1150–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Choi EY, Thomas DG, McHugh JB, Patel RM, Roulston D, Schuetze SM, Chugh R, Biermann JS, Lucas DR. Undifferentiated small round cell sarcoma with t(4;19)(q35;q13.1) CIC-DUX4 fusion: a novel highly aggressive soft tissue tumor with distinctive histopathology. Am J Surg Pathol. 2013;37:1379–86.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Yamada Y, Kuda M, Kohashi K, Yamamoto H, Takemoto J, Ishii T, Iura K, Maekawa A, Bekki H, Ito T, Otsuka H, Kuroda M, Honda Y, Sumiyoshi S, Inoue T, Kinoshita N, Nishida A, Yamashita K, Ito I, Komune S, Taguchi T, Iwamoto Y, Oda Y. Histological and immunohistochemical characteristics of undifferentiated small round cell sarcomas associated with CIC-DUX4 and BCOR-CCNB3 fusion genes. Virchows Arch. 2017;470:373–80.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Chiles MC, Parham DM, Qualman SJ, Teot LA, Bridge JA, Ullrich F, Barr FG, Meyer WH; Soft Tissue Sarcoma Committee of the Children's Oncology Group. Sclerosing rhabdomyosarcomas in children and adolescents: a clinicopathologic review of 13 cases from the Intergroup Rhabdomyosarcoma Study Group and Children's Oncology Group. Pediatr Dev Pathol. 2004;7:583–94.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Nascimento AF, Fletcher CD. Spindle cell rhabdomyosarcoma in adults. Am J Surg Pathol. 2005;29:1106–13.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Nascimento AF, Barr FG. Spindle cell/Sclerosing rhabdomyosarcoma. Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F, eds. In: WHO classification of tumours of soft tissue and bone. Lyon, IARC Press, 2013:134–5.Google Scholar
  45. 45.
    Alaggio R, Zhang L, Sung YS, Huang SC, Chen CL, Bisogno G, Zin A, Agaram NP, LaQuaglia MP, Wexler LH, Antonescu CR. A Molecular Study of Pediatric Spindle and Sclerosing Rhabdomyosarcoma: Identification of Novel and Recurrent VGLL2-related Fusions in Infantile Cases. Am J Surg Pathol. 2016;40(2):224–35.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Agaram NP, LaQuaglia MP, Alaggio R, Zhang L, Fujisawa Y, Ladanyi M, Wexler LH, Antonescu CR. MYOD1-mutant spindle cell and sclerosing rhabdomyosarcoma: an aggressive subtype irrespective of age. A reappraisal for molecular classification and risk stratification. Mod Pathol. 2019;32:27–36.PubMedCrossRefGoogle Scholar
  47. 47.
    Rekhi B, Upadhyay P, Ramteke MP, Dutt A. MYOD1 (L122R) mutations are associated with spindle cell and sclerosing rhabdomyosarcomas with aggressive clinical outcomes. Mod Pathol. 2016;29(12):1532–40.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Tsai JW, ChangChien YC, Lee JC, Kao YC, Li WS, Liang CW, Liao IC, Chang YM, Wang JC, Tsao CF, Yu SC, Huang HY. The expanding morphological and genetic spectrum of MYOD1-mutant spindle cell/sclerosing rhabdomyosarcomas: a clinicopathological and molecular comparison of mutated and non-mutated cases. Histopathology. 2019;74:933–43.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Argani P, Reuter VE, Kapur P, Brown JE, Sung YS, Zhang L, Williamson R, Francis G, Sommerville S, Swanson D, Dickson BC, Antonescu CR. Novel MEIS1-NCOA2 Gene Fusions Define a Distinct Primitive Spindle Cell Sarcoma of the Kidney. Am J Surg Pathol. 2018;42:1562–70.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Agaram NP, Zhang L, Sung YS, Cavalcanti MS, Torrence D, Wexler L, Francis G, Sommerville S, Swanson D, Dickson BC, Suurmeijer AJH, Williamson R, Antonescu CR. Expanding the Spectrum of Intraosseous Rhabdomyosarcoma: Correlation Between 2 Distinct Gene Fusions and Phenotype. Am J Surg Pathol. 2019;43:695–702.PubMedCrossRefGoogle Scholar
  51. 51.
    Prieto-Granada CN, Wiesner T, Messina JL, Jungbluth AA, Chi P, Antonescu CR. Loss of H3K27me3 Expression Is a Highly Sensitive Marker for Sporadic and Radiation-induced MPNST. Am J Surg Pathol. 2016;40:479–89.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Cleven AH, Sannaa GA, Briaire-de Bruijn I, Ingram DR, van de Rijn M, Rubin BP, de Vries MW, Watson KL, Torres KE, Wang WL, van Duinen SG, Hogendoorn PC, Lazar AJ, Bovée JV. Loss of H3K27 tri-methylation is a diagnostic marker for malignant peripheral nerve sheath tumors and an indicator for an inferior survival. Mod Pathol. 2016;29:582–90.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Asano N, Yoshida A, Ichikawa H, Mori T, Nakamura M, Kawai A, Hiraoka N. Immunohistochemistry for trimethylated H3K27 in the diagnosis of malignant peripheral nerve sheath tumours. Histopathology. 2017;70:385–93.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Otsuka H, Kohashi K, Yoshimoto M, Ishihara S, Toda Y, Yamada Y, Yamamoto H, Nakashima Y, Oda Y. Immunohistochemical evaluation of H3K27 trimethylation in malignant peripheral nerve sheath tumors. Pathol Res Pract. 2018;214:417–25.PubMedCrossRefGoogle Scholar
  55. 55.
    Hornick JL, Nielsen GP. Beyond "Triton": Beyond "Triton": malignant peripheral nerve sheath tumors with complete heterologous rhabdomyoblastic differentiation mimicking spindle cell rhabdomyosarcoma. Am J Surg Pathol. 2019;43:1323–30.PubMedCrossRefGoogle Scholar
  56. 56.
    Jo VY, Mariño-Enríquez A, Fletcher CD. Epithelioid rhabdomyosarcoma: clinicopathologic analysis of 16 cases of a morphologically distinct variant of rhabdomyosarcoma. Am J Surg Pathol. 2011;35:1523–30.PubMedCrossRefGoogle Scholar
  57. 57.
    Zin A, Bertorelle R, Dall'Igna P, Manzitti C, Gambini C, Bisogno G, Rosolen A, Alaggio R. Epithelioid rhabdomyosarcoma: a clinicopathologic and molecular study. Am J Surg Pathol. 2014;38:273–8.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Noujaim J, Thway K, Jones RL, Miah A, Khabra K, Langer R, Kasper B, Judson I, Benson C, Kollàr A. Adult pleomorphic rhabdomyosarcoma: a multicentre retrospective study. Anticancer Res. 2015;35:6213–7.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan

Personalised recommendations