Head and Neck Pathology

, Volume 13, Issue 4, pp 543–547 | Cite as

SOX10 Immunoexpression in Basaloid Squamous Cell Carcinomas: A Diagnostic Pitfall for Ruling out Salivary Differentiation

  • Lisa M. RooperEmail author
  • Austin M. McCuiston
  • William H. Westra
  • Justin A. Bishop
Original Paper


SOX10 immunoexpression is increasingly recognized in salivary gland tumors, including but not limited to those with myoepithelial, serous acinar, and intercalated duct differentiation. However, SOX10 expression has not been extensively evaluated in other epithelial tumors that can mimic salivary origin. Basaloid squamous cell carcinoma (SCC) is a unique variant of SCC that shows morphologic overlap with several salivary tumors, including adenoid cystic carcinoma, basal cell adenocarcinoma, and myoepithelial carcinoma. We performed SOX10 immunohistochemistry on 22 basaloid SCCs and 280 non-basaloid SCCs. If tissue was available, we also performed immunohistochemistry for S100 and p16, and in-situ hybridization for high-risk HPV RNA. SOX10 was positive in 13/22 basaloid SCCs (59%), including 5/6 (83%) that were HPV-positive and 6/12 (50%) that were HPV-negative. Only 2/12 basaloid SCC (17%) demonstrated focal S100 expression. All non-basaloid SCCs were SOX10 negative. Frequent positivity for SOX10 in basaloid SCC presents a significant diagnostic pitfall for distinguishing these tumors from various basaloid salivary carcinomas. The preponderance of SOX10 expression in the basaloid variant of HPV-positive SCC also presents a diagnostic challenge in separating it from HPV-related multiphenotypic sinonasal carcinoma. SOX10 may be more broadly considered a marker of basal differentiation and should not be assumed to be specific for salivary origin in epithelial head and neck tumors.


Basaloid squamous cell carcinoma Squamous cell carcinoma SOX10 Human papillomavirus Immunohistochemistry 


Compliance with Ethical Standards

Conflict of interest

All authors have no potential conflicts of interest to declare. This work was performed under Johns Hopkins IRB00176170 with consent waiver.


  1. 1.
    Karamchandani JR, Nielsen TO, van de Rijn M, West RB. Sox10 and S100 in the diagnosis of soft-tissue neoplasms. Appl Immunohistochem Mol Morphol. 2012;20(5):445–50.CrossRefGoogle Scholar
  2. 2.
    Mohamed A, Gonzalez RS, Lawson D, Wang J, Cohen C. SOX10 expression in malignant melanoma, carcinoma, and normal tissues. Appl Immunohistochem Mol Morphol. 2013;21(6):506–10.CrossRefGoogle Scholar
  3. 3.
    Nonaka D, Chiriboga L, Rubin BP. Sox10: a pan-schwannian and melanocytic marker. Am J Surg Pathol. 2008;32(9):1291–8.CrossRefGoogle Scholar
  4. 4.
    Shin J, Vincent JG, Cuda JD, Xu H, Kang S, Kim J, et al. Sox10 is expressed in primary melanocytic neoplasms of various histologies but not in fibrohistiocytic proliferations and histiocytoses. J Am Acad Dermatol. 2012;67(4):717–26.CrossRefGoogle Scholar
  5. 5.
    Hsieh MS, Lee YH, Chang YL. SOX10-positive salivary gland tumors: a growing list, including mammary analogue secretory carcinoma of the salivary gland, sialoblastoma, low-grade salivary duct carcinoma, basal cell adenoma/adenocarcinoma, and a subgroup of mucoepidermoid carcinoma. Hum Pathol. 2016;56:134–42.CrossRefGoogle Scholar
  6. 6.
    Ivanov SV, Panaccione A, Nonaka D, Prasad ML, Boyd KL, Brown B, et al. Diagnostic SOX10 gene signatures in salivary adenoid cystic and breast basal-like carcinomas. Br J Cancer. 2013;109(2):444–51.CrossRefGoogle Scholar
  7. 7.
    Miettinen M, McCue PA, Sarlomo-Rikala M, Biernat W, Czapiewski P, Kopczynski J, et al. Sox10–a marker for not only schwannian and melanocytic neoplasms but also myoepithelial cell tumors of soft tissue: a systematic analysis of 5134 tumors. Am J Surg Pathol. 2015;39(6):826–35.CrossRefGoogle Scholar
  8. 8.
    Ohtomo R, Mori T, Shibata S, Tsuta K, Maeshima AM, Akazawa C, et al. SOX10 is a novel marker of acinus and intercalated duct differentiation in salivary gland tumors: a clue to the histogenesis for tumor diagnosis. Mod Pathol. 2013;26(8):1041–50.CrossRefGoogle Scholar
  9. 9.
    Schmitt AC, Cohen C, Siddiqui MT. Expression of SOX10 in salivary gland oncocytic neoplasms: a review and a comparative analysis with other immunohistochemical markers. Acta Cytol. 2015;59(5):384–90.CrossRefGoogle Scholar
  10. 10.
    Begum S, Westra WH. Basaloid squamous cell carcinoma of the head and neck is a mixed variant that can be further resolved by HPV status. Am J Surg Pathol. 2008;32(7):1044–50.CrossRefGoogle Scholar
  11. 11.
    Chernock RD, Lewis JS Jr, Zhang Q, El-Mofty SK. Human papillomavirus-positive basaloid squamous cell carcinomas of the upper aerodigestive tract: a distinct clinicopathologic and molecular subtype of basaloid squamous cell carcinoma. Hum Pathol. 2010;41(7):1016–23.CrossRefGoogle Scholar
  12. 12.
    Barnes L, Ferlito A, Altavilla G, MacMillan C, Rinaldo A, Doglioni C. Basaloid squamous cell carcinoma of the head and neck: clinicopathological features and differential diagnosis. Ann Otol Rhinol Laryngol. 1996;105(1):75–82.CrossRefGoogle Scholar
  13. 13.
    Lewis JS, Gillison ML, Westra WH, Zidar N. Basaloid squamous cell carcinoma. In: El-Naggar A, Chan JK, Grandis JR, Takata T, Slootweg PJ, editors. WHO Classification of Head and Neck Tumours. Lyon: International Agency for Research on Cancer; 2017. pp. 85–6.Google Scholar
  14. 14.
    Wain SL, Kier R, Vollmer RT, Bossen EH. Basaloid-squamous carcinoma of the tongue, hypopharynx, and larynx: report of 10 cases. Hum Pathol. 1986;17(11):1158–66.CrossRefGoogle Scholar
  15. 15.
    Banks ER, Frierson HF Jr, Mills SE, George E, Zarbo RJ, Swanson PE. Basaloid squamous cell carcinoma of the head and neck. A clinicopathologic and immunohistochemical study of 40 cases. Am J Surg Pathol. 1992;16(10):939–46.CrossRefGoogle Scholar
  16. 16.
    Emanuel P, Wang B, Wu M, Burstein DE. p63 Immunohistochemistry in the distinction of adenoid cystic carcinoma from basaloid squamous cell carcinoma. Mod Pathol. 2005;18(5):645–50.CrossRefGoogle Scholar
  17. 17.
    Klijanienko J, el-Naggar A, Ponzio-Prion A, Marandas P, Micheau C, Caillaud JM. Basaloid squamous carcinoma of the head and neck. Immunohistochemical comparison with adenoid cystic carcinoma and squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 1993;119(8):887–90.CrossRefGoogle Scholar
  18. 18.
    Morice WG, Ferreiro JA. Distinction of basaloid squamous cell carcinoma from adenoid cystic and small cell undifferentiated carcinoma by immunohistochemistry. Hum Pathol. 1998;29(6):609–12.CrossRefGoogle Scholar
  19. 19.
    Serrano MF, El-Mofty SK, Gnepp DR, Lewis JS Jr. Utility of high molecular weight cytokeratins, but not p63, in the differential diagnosis of neuroendocrine and basaloid carcinomas of the head and neck. Hum Pathol. 2008;39(4):591–8.CrossRefGoogle Scholar
  20. 20.
    Westra WH, Taube JM, Poeta ML, Begum S, Sidransky D, Koch WM. Inverse relationship between human papillomavirus-16 infection and disruptive p53 gene mutations in squamous cell carcinoma of the head and neck. Clin Cancer Res. 2008;14(2):366–9.CrossRefGoogle Scholar
  21. 21.
    Ereno C, Gaafar A, Garmendia M, Etxezarraga C, Bilbao FJ, Lopez JI. Basaloid squamous cell carcinoma of the head and neck: a clinicopathological and follow-up study of 40 cases and review of the literature. Head Neck Pathol. 2008;2(2):83–91.CrossRefGoogle Scholar
  22. 22.
    Bishop JA, Andreasen S, Hang JF, Bullock MJ, Chen TY, Franchi A, et al. HPV-related multiphenotypic sinonasal carcinoma: an expanded series of 49 cases of the tumor formerly known as hpv-related carcinoma with adenoid cystic carcinoma-like features. Am J Surg Pathol. 2017;41(12):1690–701.CrossRefGoogle Scholar
  23. 23.
    Bishop JA, Ogawa T, Stelow EB, Moskaluk CA, Koch WM, Pai SI, et al. Human papillomavirus-related carcinoma with adenoid cystic-like features: a peculiar variant of head and neck cancer restricted to the sinonasal tract. Am J Surg Pathol. 2013;37(6):836–44.CrossRefGoogle Scholar
  24. 24.
    Hsieh MS, Lee YH, Jin YT, Huang WC. Strong SOX10 expression in HPV-related multiphenotypic sinonasal carcinoma: report of six new cases validated by high-risk HPV mRNA in situ hybridization test. Hum Pathol. 2018. CrossRefPubMedGoogle Scholar
  25. 25.
    Cimino-Mathews A, Subhawong AP, Elwood H, Warzecha HN, Sharma R, Park BH, et al. Neural crest transcription factor Sox10 is preferentially expressed in triple-negative and metaplastic breast carcinomas. Hum Pathol. 2013;44(6):959–65.CrossRefGoogle Scholar
  26. 26.
    Harbhajanka A, Chahar S, Miskimen K, Silverman P, Harris L, Williams N, et al. Clinicopathological, immunohistochemical and molecular correlation of neural crest transcription factor SOX10 expression in triple-negative breast carcinoma. Hum Pathol. 2018;80:163–9.CrossRefGoogle Scholar
  27. 27.
    Nelson ER, Sharma R, Argani P, Cimino-Mathews A. Utility of Sox10 labeling in metastatic breast carcinomas. Hum Pathol. 2017;67:205–10.CrossRefGoogle Scholar
  28. 28.
    Fadare O, Tavassoli FA. The phenotypic spectrum of basal-like breast cancers: a critical appraisal. Adv Anat Pathol. 2007;14(5):358–73.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lisa M. Rooper
    • 1
    • 2
    Email author
  • Austin M. McCuiston
    • 1
  • William H. Westra
    • 3
  • Justin A. Bishop
    • 4
  1. 1.Department of PathologyThe Johns Hopkins HospitalBaltimoreUSA
  2. 2.Department of OncologyThe Johns Hopkins HospitalBaltimoreUSA
  3. 3.Department of PathologyIcahn School of Medicine at Mount Sinai HospitalNew YorkUSA
  4. 4.Department of PathologyUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations