Advertisement

Biomolecular NMR Assignments

, Volume 12, Issue 2, pp 351–355 | Cite as

Backbone and side chain NMR assignments for the ribosome Elongation Factor P (EF-P) from Staphylococcus aureus

  • Konstantin S. Usachev
  • Alexander A. Golubev
  • Shamil Z. Validov
  • Vladimir V. Klochkov
  • Albert V. Aganov
  • Iskander Sh. Khusainov
  • Marat M. Yusupov
Article

Abstract

Elongation Factor P (EF-P) is a 20.5 kDa protein that provides specialized translation of special stalling amino acid motifs. Proteins with stalling motifs are often involved in various processes, including stress resistance and virulence. Thus it has been shown that the virulent properties of microorganisms can be significantly reduced if the work of EF-P is disrupted. In order to elucidate the structure, dynamics and function of EF-P from Staphylococcus aureus (S. aureus), here we report backbone and side chains 1H, 13C and 15N chemical shift assignments of EF-P. Analysis of the backbone chemical shifts by TALOS+ suggests that EF-P contains 1 α-helix and 13 β-strands (β1-β2-β3-β4-β5-β6-β7-α1-β8-β9-β10-β11-β12-β13). The solution of the structure of this protein by NMR and X-ray diffraction analysis, as well as the structure of the ribosome complex by cryo-electron microscopy, will allow further screening of highly selective inhibitors of the translation of the pathogenic bacterium S. aureus. Here we report the almost complete 1H, 13C, 15N backbone and side chain NMR assignment of a 20.5 kDa EF-P.

Keywords

EF-P Staphylococcus aureus Ribosome Protein NMR Resonance assignment 

Abbreviations

S. aureus

Staphylococcus aureus

EF-P

Elongation Factor P

Cryo-EM

Cryo-electron microscopy

SEC

Size-exclusion chromatography

IMAC

Immobilized metal affinity chromatography

Notes

Acknowledgements

This work was supported by the Russian Science Foundation (Grant 17-74-20009).

References

  1. Alejo JL, Blanchard SC (2017) Miscoding-induced stalling of substrate translocation on the bacterial ribosome. Proc Natl Acad Sci USA 114:E8603–E8610.  https://doi.org/10.1073/pnas.1707539114 CrossRefGoogle Scholar
  2. Bearson SM, Bearson BL, Brunelle BW, Sharma VK, Lee IS (2011) A mutation in the poxA gene of Salmonella enterica serovar typhimurium alters protein production, elevates susceptibility to environmental challenges, and decreases swine colonization. Foodborne Pathog Dis 8:725–732.  https://doi.org/10.1089/fpd.2010.0796 CrossRefGoogle Scholar
  3. Berjanskii MV, Wishart DS (2005) A simple method to predict protein flexibility using secondary chemical shifts. J Am Chem Soc 127:14970–14971.  https://doi.org/10.1021/ja054842f CrossRefGoogle Scholar
  4. Blaha G, Stanley RE, Steitz TA (2009) Formation of the first peptide bond: the structure of EF-P bound to the 70S ribosome. Science 325:966–970.  https://doi.org/10.1126/science.1175800 ADSCrossRefGoogle Scholar
  5. Daragan VA, Mayo KH (1997) Motional model analyses of protein and peptide dynamics using 13C and 15N NMR relaxation. Prog NMR Spectrosc 31:63–105CrossRefGoogle Scholar
  6. Doerfel LK, Wohlgemuth I, Kubyshkin V, Starosta AL, Wilson DN, Budisa N, Rodnina MV (2015) Entropic contribution of elongation factor P to proline positioning at the catalytic center of the ribosome. J Am Chem Soc 137:12997–13006.  https://doi.org/10.1021/jacs.5b07427 CrossRefGoogle Scholar
  7. Gamper HB, Masuda I, Frenkel-Morgenstern M, Hou YM (2015) Maintenance of protein synthesis reading frame by EF-P and m(1)G37-tRNA. Nat Commun 6:7226.  https://doi.org/10.1038/ncomms8226 ADSCrossRefGoogle Scholar
  8. Golovanov AP, Hautbergue GM, Wilson SA, Lian L-Y (2004) A simple method for improving protein solubility and long-term stability. J Am Chem Soc 126:8933–8939.  https://doi.org/10.1021/ja049297h CrossRefGoogle Scholar
  9. Hovmoller S, Zhou T, Ohlson T (2002) Conformations of amino acids in proteins. Acta Crystallogr D 58:768–776CrossRefGoogle Scholar
  10. Khusainov I, Vicens Q, Bochler A, Grosse F, Myasnikov A, Meńetret J-F, Chicher J, Marzi S, Romby P, Yusupova G, Yusupov M, Hashem Y (2016) Structure of the 70S ribosome from human pathogen Staphylococcus aureus. Nucleic Acids Res 44:10491–10504.  https://doi.org/10.1093/nar/gkw933 Google Scholar
  11. Khusainov I, Vicens Q, Ayupov R, Usachev K, Myasnikov A, Simonetti A, Validov Sh, Kieffer B, Yusupova G, Yusupov M, Hashem Y (2017) Structures and dynamics of hibernating ribosomes from Staphylococcus aureus mediated by intermolecular interactions of HPF. EMBO J 36:2073–2087.  https://doi.org/10.15252/embj.201696105 CrossRefGoogle Scholar
  12. Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–523.  https://doi.org/10.1056/NEJM199808203390806 CrossRefGoogle Scholar
  13. Navarre WW et al (2010) PoxA, yjeK, and elongation factor P coordinately modulate virulence and drug resistance in Salmonella enterica. Mol Cell 39:209–221.  https://doi.org/10.1016/j.molcel.2010.06.021 CrossRefGoogle Scholar
  14. Ohashi Y et al (2003) Expression profiling of translation-associated genes in sporulating Bacillus subtilis and consequence of sporulation by gene inactivation. Biosci Biotechnol Biochem 67:2245–2253.  https://doi.org/10.1271/bbb.67.2245 CrossRefGoogle Scholar
  15. Rajkovic A, Ibba M (2017) Elongation factor P and the control of translation elongation. Annu Rev Microbiol 71:117–131.  https://doi.org/10.1146/annurev-micro-090816-093629 CrossRefGoogle Scholar
  16. Rajkovic A, Witzky A, Navarre W, Darwin AJ, Ibba M (2015) Elongation factor-P at the crossroads of the host–endosymbiont interface. Microb Cell 2:360–362.  https://doi.org/10.15698/mic2015.10.232 CrossRefGoogle Scholar
  17. Rajkovic A et al (2016) Translation control of swarming proficiency in Bacillus subtilis by 5-amino-pentanolylated elongation factor P. J Biol Chem 291:10976–10985.  https://doi.org/10.1074/jbc.M115.712091 CrossRefGoogle Scholar
  18. Roy H et al (2011) The tRNA synthetase paralog PoxA modifies elongation factor-P with (R)-beta-lysine. Nat Chem Biol 7:667–669.  https://doi.org/10.1038/nchembio.632 CrossRefGoogle Scholar
  19. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS plus: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223.  https://doi.org/10.1007/s10858-009-9333-z CrossRefGoogle Scholar
  20. Vranken WF et al (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696.  https://doi.org/10.1002/prot.20449 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Konstantin S. Usachev
    • 1
    • 2
  • Alexander A. Golubev
    • 1
  • Shamil Z. Validov
    • 1
  • Vladimir V. Klochkov
    • 2
  • Albert V. Aganov
    • 2
  • Iskander Sh. Khusainov
    • 1
    • 3
  • Marat M. Yusupov
    • 1
    • 3
  1. 1.Laboratory of Structural Biology, Institute of Fundamental Medicine and BiologyKazan Federal UniversityKazanRussia
  2. 2.NMR Laboratory, Medical Physics Department, Institute of PhysicsKazan Federal UniversityKazanRussia
  3. 3.Département de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964Université de StrasbourgIllkirchFrance

Personalised recommendations