Partial solid-state NMR 1H, 13C, 15N resonance assignments of a perdeuterated back-exchanged seven-transmembrane helical protein Anabaena Sensory Rhodopsin

  • David Bolton
  • Leonid S. Brown
  • Vladimir Ladizhansky
Article
  • 61 Downloads

Abstract

Anabaena Sensory Rhodopsin (ASR) is a unique photochromic membrane-embedded photosensor which interacts with soluble transducer and is likely involved in a light-dependent gene regulation in the cyanobacterium Anabaena sp. PCC 7120. We report partial spectroscopic 1H, 13C and 15N assignments of perdeuterated and back-exchanged ASR reconstituted in lipids. The reported assignments are in general agreement with previously determined assignments of carbon and nitrogen resonances in fully protonated samples. Because the back-exchange was performed on ASR in a detergent-solubilized state, the location of detected residues reports on the solvent accessibility of ASR in detergent. A comparison with the results of previously published hydrogen/exchange data collected on the ASR reconstituted in lipids, suggests that the protein has larger solvent accessible surface in the detergent-solubilized state.

Keywords

Anabaena Sensory Rhodopsin Magic-angle spinning Solid-state NMR Chemical shifts Solvent accessibility. 

Notes

Acknowledgements

This research was supported by NSERC Discovery Grants to L.S.B. (RGPIN-2013-250202) and V.L. (RGPIN-2014-04547), Canada Foundation of Innovation, and Ontario Ministry of Research and Innovation.

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interests.

Supplementary material

12104_2018_9815_MOESM1_ESM.pdf (4.1 mb)
Supplementary material 1 (PDF 4218 KB)

References

  1. Asami S, Reif B (2012) Assignment strategies for aliphatic protons in the solid-state in randomly protonated proteins. J Biomol NMR 52:31–39CrossRefGoogle Scholar
  2. Barbet-Massin E et al (2013) Out-and-back C-C scalar transfers in protein resonance assignment by proton-detected solid-state NMR under ultra-fast MAS. J Biomol NMR 56:379–386CrossRefGoogle Scholar
  3. Barbet-Massin E et al (2014) Rapid proton-detected NMR assignment for proteins with fast magic angle spinning. J Am Chem Soc 136:12489–12497CrossRefGoogle Scholar
  4. Colombo MG, Meier BH, Ernst RR (1988) Rotor-driven spin diffusion in natural-abundance C-13 spin systems. Chem Phys Lett 146:189–196ADSCrossRefGoogle Scholar
  5. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe—a multidimensional spectral processing system based on unix pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  6. Good D, Pham C, Jagas J, Lewandowski JR, Ladizhansky V (2017) Solid-state NMR provides evidence for small-amplitude slow domain motions in a multispanning transmembrane alpha-helical protein. J Am Chem Soc 139:9246–9258CrossRefGoogle Scholar
  7. Hansen PE (1988) Isotope effects in nuclear shielding. Prog Nucl Magn Reson Spectrosc 20:207–255CrossRefGoogle Scholar
  8. Hansen PE (2000) Isotope effects on chemical shifts of proteins and peptides. Magn Reson Chem 38:1–10CrossRefGoogle Scholar
  9. Jung KH (2007) The distinct signaling mechanisms of microbial sensory rhodopsins in Archaea, Eubacteria and Eukarya. Photochem Photobiol 83:63–69CrossRefGoogle Scholar
  10. Jung KH, Trivedi VD, Spudich JL (2003) Demonstration of a sensory rhodopsin in eubacteria. Mol Microbiol 47:1513–1522CrossRefGoogle Scholar
  11. Kawanabe A, Furutani Y, Yoon SR, Jung KH, Kandori H (2008) FTIR study of the L intermediate of Anabaena Sensory Rhodopsin: structural changes in the cytoplasmic region. Biochemistry 47:10033–10040CrossRefGoogle Scholar
  12. Keller R (2004) The computer aided resonance assignment tutorial, 1st edn. CANTINA Verlag, GoldauGoogle Scholar
  13. Kondoh M, Inoue K, Sasaki J, Spudich JL, Terazima M (2011) Transient dissociation of the transducer protein from Anabaena Sensory Rhodopsin concomitant with formation of the M state produced upon photoactivation. J Am Chem Soc 133:13406–13412CrossRefGoogle Scholar
  14. Linser R et al (2011) Proton-detected solid-state NMR spectroscopy of fibrillar and membrane proteins. Angew Chem Int Ed Engl 50:4508–4512CrossRefGoogle Scholar
  15. Morcombe CR, Zilm KW (2003) Chemical shift referencing in MAS solid state NMR. J Magn Reson 162:479–486ADSCrossRefGoogle Scholar
  16. Ottiger M, Bax A (1997) An empirical correlation between amide deuterium isotope effects on C-13(alpha) chemical shifts and protein backbone conformation. J Am Chem Soc 119:8070–8075CrossRefGoogle Scholar
  17. Raleigh DP, Levitt MH, Griffin RG (1988) Rotational Resonance in Solid-State NMR. Chem Phys Lett 146:71–76ADSCrossRefGoogle Scholar
  18. Shi L, Yoon SR, Bezerra AG Jr, Jung KH, Brown LS (2006) Cytoplasmic shuttling of protons in Anabaena Sensory Rhodopsin: implications for signaling mechanism. J Mol Biol 358:686–700CrossRefGoogle Scholar
  19. Shi L, Kawamura I, Jung KH, Brown LS, Ladizhansky V (2011) Conformation of a seven-helical transmembrane photosensor in the lipid environment. Angew Chem Int Ed Engl 50:1302–1305CrossRefGoogle Scholar
  20. Smith AA, Ravotti F, Testori E, Cadalbert R, Ernst M, Bockmann A, Meier BH (2017) Partially-deuterated samples of HET-s(218-289) fibrils: assignment and deuterium isotope effect. J Biomol NMR 67:109–119CrossRefGoogle Scholar
  21. Venters RA, Farmer BT 2nd, Fierke CA, Spicer LD (1996) Characterizing the use of perdeuteration in NMR studies of large proteins: 13C, 15N and 1H assignments of human carbonic anhydrase II. J Mol Biol 264:1101–1116CrossRefGoogle Scholar
  22. Vogeley L, Sineshchekov OA, Trivedi VD, Sasaki J, Spudich JL, Luecke H (2004) Anabaena Sensory Rhodopsin: a photochromic color sensor at 2.0 A. Science 306:1390–1393ADSCrossRefGoogle Scholar
  23. Wang S, Kim SY, Jung KH, Ladizhansky V, Brown LS (2011a) A eukaryotic-like interaction of soluble cyanobacterial sensory rhodopsin transducer with DNA. J Mol Biol 411:449–462CrossRefGoogle Scholar
  24. Wang S, Shi L, Kawamura I, Brown LS, Ladizhansky V (2011b) Site-specific solid-state NMR detection of hydrogen-deuterium exchange reveals conformational changes in a 7-helical transmembrane protein. Biophys J 101:L23-25CrossRefGoogle Scholar
  25. Wang S, Munro RA, Kim SY, Jung KH, Brown LS, Ladizhansky V (2012) Paramagnetic relaxation enhancement reveals oligomerization interface of a membrane protein. J Am Chem Soc 134:16995–16998CrossRefGoogle Scholar
  26. Wang S et al (2013a) Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein. Nat Methods 10:1007–1012CrossRefGoogle Scholar
  27. Wang S, Shi L, Okitsu T, Wada A, Brown LS, Ladizhansky V (2013b) Solid-state NMR (13)C and (15)N resonance assignments of a seven-transmembrane helical protein Anabaena Sensory Rhodopsin. Biomol NMR Assign 7:253–256CrossRefGoogle Scholar
  28. Wang S et al (2016) Structure and dynamics of extracellular loops in human Aquaporin-1 from solid-state NMR and molecular dynamics. J Phys Chem B 120:9887–9902CrossRefGoogle Scholar
  29. Ward ME, Shi L, Lake E, Krishnamurthy S, Hutchins H, Brown LS, Ladizhansky V (2011) Proton-detected solid-state NMR reveals intramembrane polar networks in a seven-helical transmembrane protein proteorhodopsin. J Am Chem Soc 133:17434–17443CrossRefGoogle Scholar
  30. Ward ME, Wang S, Krishnamurthy S, Hutchins H, Fey M, Brown LS, Ladizhansky V (2014) High-resolution paramagnetically enhanced solid-state NMR spectroscopy of membrane proteins at fast magic angle spinning. J Biomol NMR 58:37–47CrossRefGoogle Scholar
  31. Ward ME et al (2015) In situ structural studies of Anabaena Sensory Rhodopsin in the E. coli membrane. Biophys J 108:1683–1696CrossRefGoogle Scholar
  32. Wylie BJ, Sperling LJ, Rienstra CM (2008) Isotropic chemical shifts in magic-angle spinning NMR spectra of proteins. Phys Chem Chem Phys 10:405–413CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Biophysics Interdepartmental GroupUniversity of GuelphGuelphCanada

Personalised recommendations