Advertisement

Biomolecular NMR Assignments

, Volume 11, Issue 2, pp 143–149 | Cite as

Sequence-specific backbone resonance assignments and microsecond timescale molecular dynamics simulation of human eosinophil-derived neurotoxin

  • Donald Gagné
  • Chitra Narayanan
  • Khushboo Bafna
  • Laurie-Anne Charest
  • Pratul K. Agarwal
  • Nicolas Doucet
Article

Abstract

Eight active canonical members of the pancreatic-like ribonuclease A (RNase A) superfamily have been identified in human. All structural homologs share similar RNA-degrading functions, while also cumulating other various biological activities in different tissues. The functional homologs eosinophil-derived neurotoxin (EDN, or RNase 2) and eosinophil cationic protein (ECP, or RNase 3) are known to be expressed and secreted by eosinophils in response to infection, and have thus been postulated to play an important role in host defense and inflammatory response. We recently initiated the biophysical and dynamical investigation of several vertebrate RNase homologs and observed that clustering residue dynamics appear to be linked with the phylogeny and biological specificity of several members. Here we report the 1H, 13C and 15N backbone resonance assignments of human EDN (RNase 2) and its molecular dynamics simulation on the microsecond timescale, providing means to pursue this comparative atomic-scale functional and dynamical analysis by NMR and computation over multiple time frames.

Keywords

Ribonucleases RNA RNase A EDN RNase 2 Protein orthologs Enzyme dynamics 

Notes

Acknowledgements

The authors thank Tara Sprules (Québec/Eastern Canada High Field NMR Facility, McGill University) and Sameer Al-Abdul-Wahid (NMR Centre, University of Guelph) for their excellent technical assistance, in addition to David Bernard (INRS-Institut Armand-Frappier) and Bruce Johnson (CUNY Advanced Science Research Center) for helpful discussions. This work was supported by the National Institute of General Medical Sciences (NIGMS) of the NIH under award number R01GM105978 (to N.D. and P.K.A.), and a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant under award number RGPIN-2016-05557 (to N. D.). N.D. holds a Fonds de Recherche Québec – Santé (FRQS) Research Scholar Junior 2 Career Award. C.N. is the recipient of a postdoctoral fellowship from the Fondation Universitaire Armand-Frappier de l’INRS. D.G. and L.A.C. were respectively recipients of an NSERC Alexander Graham Bell Canada Graduate Scholarship and a M.Sc. scholarship from the Fondation Universitaire Armand-Frappier de l’INRS.

Supplementary material

12104_2017_9736_MOESM1_ESM.docx (161 kb)
Supplementary material 1 (DOCX 160 KB)

References

  1. Ackerman SJ, Gleich GJ, Loegering DA, Richardson BA, Butterworth AE (1985) Comparative toxicity of purified human eosinophil granule cationic proteins for schistosomula of Schistosoma mansoni. Am J Trop Med Hyg 34:735–745CrossRefGoogle Scholar
  2. Agarwal PK (2004) Cis/trans isomerization in HIV-1 capsid protein catalyzed by cyclophilin A: insights from computational and theoretical studies. Proteins 56:449–463CrossRefGoogle Scholar
  3. Armougom F, Moretti S, Poirot O, Audic S, Dumas P, Schaeli B et al (2006) Expresso: automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee. Nucleic Acids Res 34:W604–W608CrossRefGoogle Scholar
  4. Berjanskii MV, Wishart DS (2005) A simple method to predict protein flexibility using secondary chemical shifts. J Am Chem Soc 127:14970–14971CrossRefGoogle Scholar
  5. Boix E, Leonidas DD, Nikolovski Z, Nogues MV, Cuchillo CM, Acharya KR (1999) Crystal structure of eosinophil cationic protein at 2.4 Å resolution. BioChemistry 38:16794–16801CrossRefGoogle Scholar
  6. Carreras E, Boix E, Rosenberg HF, Cuchillo CM, Nogues MV (2003) Both aromatic and cationic residues contribute to the membrane-lytic and bactericidal activity of eosinophil cationic protein. BioChemistry 42:6636–6644CrossRefGoogle Scholar
  7. Case D, Babin V, Berryman J, Betz R, Cai Q, Cerutti D et al. (2014) Amber 14, University of California, San FranciscoGoogle Scholar
  8. Chang KC, Lo CW, Fan TC, Chang MD, Shu CW, Chang CH et al. (2010) TNF-alpha mediates eosinophil cationic protein-induced apoptosis in BEAS-2B cells. BMC Cell Biol 11:6CrossRefGoogle Scholar
  9. Domachowske JB, Dyer KD, Bonville CA, Rosenberg HF (1998) Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus. J Infect Dis 177:1458–1464CrossRefGoogle Scholar
  10. Gagné D, Doucet N (2013) Structural and functional importance of local and global conformational fluctuations in the RNase A superfamily. FEBS J 280:5596–5607CrossRefGoogle Scholar
  11. Gagné D and Doucet N (2015) Sequence-specific backbone 1H, 13C, and 15N resonance assignments of human ribonuclease 4. Biomol NMR Assign 9:181–185CrossRefGoogle Scholar
  12. Gagné D, Charest LA, Morin S, Kovrigin EL, Doucet N (2012) Conservation of flexible residue clusters among structural and functional enzyme homologues. J Biol Chem 287:44289–44300CrossRefGoogle Scholar
  13. Gagné D, French RL, Narayanan C, Simonovic M, Agarwal PK, Doucet N (2015a) Perturbation of the conformational dynamics of an active-site loop alters enzyme activity. Structure 23:2256–2266CrossRefGoogle Scholar
  14. Gagné D, Narayanan C, Doucet N (2015b) Network of long-range concerted chemical shift displacements upon ligand binding to human angiogenin. Protein Sci 24:525–533CrossRefGoogle Scholar
  15. Hamann KJ, Barker RL, Loegering DA, Gleich GJ (1987) Comparative toxicity of purified human eosinophil granule proteins for newborn larvae of Trichinella spiralis. J Parasitol 73:523–529CrossRefGoogle Scholar
  16. Hamann KJ, Gleich GJ, Checkel JL, Loegering DA, McCall JW, Barker RL (1990) In vitro killing of microfilariae of Brugia pahangi and Brugia malayi by eosinophil granule proteins. J Immunol 144:3166–3173Google Scholar
  17. Han B, Liu Y, Ginzinger SW, Wishart DS (2011) SHIFTX2: significantly improved protein chemical shift prediction. J Biomol NMR 50:43–57CrossRefGoogle Scholar
  18. Lehrer RI, Szklarek D, Barton A, Ganz T, Hamann KJ, Gleich GJ (1989) Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J Immunol 142:4428–4434Google Scholar
  19. Leonidas DD, Boix E, Prill R, Suzuki M, Turton R, Minson K et al (2001) Mapping the ribonucleolytic active site of eosinophil-derived neurotoxin (EDN). High resolution crystal structures of EDN complexes with adenylic nucleotide inhibitors. J Biol Chem 276:15009–15017CrossRefGoogle Scholar
  20. Mosimann SC, Newton DL, Youle RJ, James MN (1996) X-ray crystallographic structure of recombinant eosinophil-derived neurotoxin at 1.83 Å resolution. J Mol Biol 260:540–552CrossRefGoogle Scholar
  21. Rosenberg HF, Tenen DG, Ackerman SJ (1989) Molecular cloning of the human eosinophil-derived neurotoxin: a member of the ribonuclease gene family. Proc Natl Acad Sci USA 86:4460–4464ADSCrossRefGoogle Scholar
  22. Rugeles MT, Trubey CM, Bedoya VI, Pinto LA, Oppenheim JJ, Rybak SM et al (2003) Ribonuclease is partly responsible for the HIV-1 inhibitory effect activated by HLA alloantigen recognition. AIDS 17:481–486CrossRefGoogle Scholar
  23. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223CrossRefGoogle Scholar
  24. Sikriwal D, Seth D, Batra JK (2009) Role of catalytic and non-catalytic subsite residues in ribonuclease activity of human eosinophil-derived neurotoxin. Biol Chem 390:225–234CrossRefGoogle Scholar
  25. Sikriwal D, Seth D, Parveen S, Malik A, Broor S, Batra JK (2012) An insertion in loop L7 of human eosinophil-derived neurotoxin is crucial for its antiviral activity. J Cell Biochem 113:3104–3112CrossRefGoogle Scholar
  26. Slifman NR, Loegering DA, McKean DJ, Gleich GJ (1986) Ribonuclease activity associated with human eosinophil-derived neurotoxin and eosinophil cationic protein. J Immunol 137:2913–2917Google Scholar
  27. Swaminathan GJ, Holloway DE, Veluraja K, Acharya KR (2002) Atomic resolution (0.98 Å) structure of eosinophil-derived neurotoxin. BioChemistry 41:3341–3352CrossRefGoogle Scholar
  28. Torrent M, Cuyas E, Carreras E, Navarro S, Lopez O, de la Maza A et al (2007) Topography studies on the membrane interaction mechanism of the eosinophil cationic protein. BioChemistry 46:720–733CrossRefGoogle Scholar
  29. Wang L, Eghbalnia HR, Bahrami A, Markley JL (2005) Linear analysis of carbon-13 chemical shift differences and its application to the detection and correction of errors in referencing and spin system identifications. J Biomol NMR 32:13–22CrossRefGoogle Scholar
  30. Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD et al (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552Google Scholar
  31. Yang D, Rosenberg HF, Chen Q, Dyer KD, Kurosaka K, Oppenheim JJ (2003) Eosinophil-derived neurotoxin (EDN), an antimicrobial protein with chemotactic activities for dendritic cells. Blood 102:3396–3403CrossRefGoogle Scholar
  32. Yang D, Chen Q, Rosenberg HF, Rybak SM, Newton DL, Wang ZY et al (2004) Human ribonuclease A superfamily members, eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation. J Immunol 173:6134–6142CrossRefGoogle Scholar
  33. Yang D, Chen Q, Su SB, Zhang P, Kurosaka K, Caspi RR et al (2008) Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J Exp Med 205:79–90CrossRefGoogle Scholar
  34. Young JD, Peterson CG, Venge P, Cohn ZA (1986) Mechanism of membrane damage mediated by human eosinophil cationic protein. Nature 321:613–616ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.INRS-Institut Armand-FrappierUniversité du QuébecLavalCanada
  2. 2.Graduate School of Genome Science and TechnologyUniversity of TennesseeKnoxvilleUSA
  3. 3.Computational Biology Institute and Computer Science and Mathematics DivisionOak Ridge National LaboratoryOak RidgeUSA
  4. 4.Department of Biochemistry, Cellular and Molecular BiologyUniversity of TennesseeKnoxvilleUSA
  5. 5.PROTEO, The Québec Network for Research on Protein Function, Engineering, and ApplicationsUniversité LavalQuebecCanada
  6. 6.GRASP, The Groupe de recherche Axé sur la Structure des ProtéinesMcGill UniversityMontrealCanada
  7. 7.Structural Biology InitiativeCUNY Advanced Science Research CenterNew YorkUSA

Personalised recommendations