The Indian Journal of Pediatrics

, Volume 86, Issue 10, pp 939–951 | Cite as

Imaging in Short Stature and Bone Age Estimation

  • Arun Kumar Gupta
  • Manisha JanaEmail author
  • Atin Kumar
Review Article


Short stature in children is a diagnostic challenge to the physician. Bone age assessment can be done using various methods. The causes of short stature are variable; often leading to a series of investigations. The endocrine conditions have typical imaging features. This chapter provides a short overview of the methods of bone age estimation, and imaging findings and algorithmic approach towards a child with short stature.


Short stature Bone age Skeletal maturity 


Authors’ Contribution

AKG Manuscript conceptualization, manuscript drafting and proof checking; MJ Manuscript drafting, reference checking and providing figs. AK Manuscript and reference checking and proof checking. AK is the guarantor for this article.

Compliance with Ethical Standards

Conflict of Interest



  1. 1.
    Menon PSN. Disorders of growth. In: Parthasarathy A, editor. IAP Textbook of Pediatrics, 6th ed. New Delhi: Jaypee Publisher; 2016. p. 872–7.Google Scholar
  2. 2.
    Chaudhary V, Bano S. Imaging in short stature. Indian J Endocrinol Metab. 2012;16:692–7.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Malina RM. Skeletal age and age verification in youth sport. Sports Med. 2011;41:925–47.CrossRefPubMedGoogle Scholar
  4. 4.
    Gupta AK. Skeletal maturity assessment. In: Gupta AK, Chowdhury V, Khandelwal N, editors. Diagnostic Radiology on Paediatric Imaging, 3rd edition. New Delhi: Jaypee Brothers Medical Publishers (P) Ltd.; 2004. p. 328–32.Google Scholar
  5. 5.
    Mughal AM, Hassan N, Ahmed A. Bone age assessment methods: a critical review. Pak J Med Sci. 2014;30:211–5.Google Scholar
  6. 6.
    Paterson RS. A radiological investigation of the epiphyses of the long bones. J Anat. 1929;64:28–46.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Flecker H. Roentgenographic observations of the times of appearance of epiphyses and their fusion with the diaphyses. J Anat. 1932;67:118–64.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Pillai MJS. The study of epiphyseal union for determining the age of south Indians. Indian J Med Res. 1936;23:1015–7.Google Scholar
  9. 9.
    Sharat S, Khanduja PC, Agarwal KN, et al. Skeletal growth in school children. Indian Pediatr. 1970;7:98–110.PubMedGoogle Scholar
  10. 10.
    Bajaj ID, Bhardwaj OP, Bhardwaj S. Appearance and fusion of important ossification centres, a study in Delhi population. Indian J Med Res. 1967;55:1064–7.PubMedGoogle Scholar
  11. 11.
    Schmidt S, Koch B, Schulz R, Reisinger W, Schmeling A. Studies in use of the Greulich–Pyle skeletal age method to assess criminal liability. Legal Med. 2008;10:190–5.CrossRefPubMedGoogle Scholar
  12. 12.
    Gaskin CM, Kahn SL, Bertozzi JC, Bunch PM. Skeletal Development of the Hand and Wrist: A Radiographic Atlas and Digital Bone Age Companion. New York: Oxford University Press; 2011. p. 1–60.CrossRefGoogle Scholar
  13. 13.
    Tanner JM. Growth at Adolescence with a General Consideration of the Effects of Hereditary and Environmental Factors upon Growth and Maturation from Birth to Maturity, 2nd edition. Oxford: Blackwell Scientific; 1962. p. 325.Google Scholar
  14. 14.
    Taner JM, Whitehouse RH, Cameron N, Marshall WA, Healy MJ, Goldstein H. Assessment of skeletal maturity and prediction of adult height. (TW 2 method); 2nd edition. London: Academic Press; 1983.Google Scholar
  15. 15.
    Tanner JM, Whitehouse RH, Cameron N, Marshall WA, Healy MJ, Goldstein NH. Assessment of skeletal maturity and prediction of adult height (TW3 method). 3rd ed. London: WB Saunders; 2001.Google Scholar
  16. 16.
    Bull RK, Edwards PD, Kemp PM, Fry S, Hughes IA. Bone age assessment: a large scale comparison of the Greulich and Pyle, and Tanner and Whitehouse (TW2) methods. Arch Dis Child. 1999;81:172–3.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    King DG, Steventon DM, O’Sullivan MP, et al. Reproducibility of bone ages when performed by radiology registrars: an audit of Tanner and Whitehouse II versus Greulich and Pyle methods. Br J Radiol. 1994;67:848–51.CrossRefPubMedGoogle Scholar
  18. 18.
    Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP. Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology. 2018;287:313–22.CrossRefPubMedGoogle Scholar
  19. 19.
    van Rijn RR, Lequin MH, Thodberg HH. Automatic determination of Greulich and Pyle bone age in healthy Dutch children. Pediatr Radiol. 2009;39:591–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Thodberg HH, Kreiborg S, Juul A, Pedersen KD. The BoneXpert method for automated determination of skeletal maturity. IEEE Trans Med Imaging. 2009;28:52–66.CrossRefPubMedGoogle Scholar
  21. 21.
    Maniar B. Skeletal maturity in Indian children. Indian J Pediatr. 1987;54:295–302.CrossRefPubMedGoogle Scholar
  22. 22.
    Jain S. Estimation of age from 13 to 21 years. J Forensic Med Toxicol. 1999;16:27–30.Google Scholar
  23. 23.
    Shimura N, Koyama S, Arisaka O, Imataka M, Sato K, Matsuura M. Assessment of measurement of children’s bone age ultrasonically with sunlight bonage. Clin Pediatr Endocrinol. 2005;14(24):S17–20.Google Scholar
  24. 24.
    Xu H, Shao H, Wang L, Jin J, Wang J. A methodological comparison between ultrasound and X-ray evaluations of bone age. J Sports Sci. 2008;6:27.Google Scholar
  25. 25.
    Mentzel H-J, Vilser C, Eulenstein M, et al. Assessment of skeletal age at the wrist in children with a new ultrasound device. Pediatr Radiol. 2005;35:429–33.CrossRefPubMedGoogle Scholar
  26. 26.
    Pennock AT, Bomar JD, Manning JD. The creation and validation of a knee bone age atlas utilizing MRI. J Bone Joint Surg Am. 2018;100:e20.CrossRefPubMedGoogle Scholar
  27. 27.
    Terada Y, Kono S, Tamada D, et al. Skeletal age assessment in children using an open compact MRI system. Magn Reson Med. 2013;69:1697–702.CrossRefPubMedGoogle Scholar
  28. 28.
    Terada Y, Kono S, Uchiumi T, et al. Improved reliability in skeletal age assessment using a pediatric hand MR Scanner with a 0.3T permanent magnet. Magn Reson Med Sci. 2014;13:215–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Chaudhary V, Bano S. Imaging of pediatric pituitary endocrinopathies. Indian J Endocrinol Metab. 2012;16:682–91.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Delman BN. Imaging of pediatric pituitary abnormalities. Endocrinol Metab Clin N Am. 2009;38:673–98.CrossRefGoogle Scholar
  31. 31.
    Kulkarni C, Moorthy S, Pullara SK, Rajesh Kannan R, Unnikrishan AG. Pituitary stalk transection syndrome: comparison of clinico-radiological features in adults and children with review of literature. Indian J Radiol Imaging. 2012;22:182–5.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ioachimescu AG, Hamrahian AH, Stevens M, Zimmerman RS. The pituitary transaction syndrome: multifaceted presentation in adulthood. Pituitary. 2012;15:405–11.CrossRefPubMedGoogle Scholar
  33. 33.
    Argyropoulou M, Perigram F, Brauner R, Brunelle F. Magnetic resonance imaging in diagnosis of growth hormone deficiency. J Pediatr. 1992;120:886–91.CrossRefPubMedGoogle Scholar
  34. 34.
    D’Ambrosio N, Soohoo S, Warshall C, Johnson A, Karimi S. Craniofacial and intracranial manifestations of langerhans cell histiocytosis: report of findings in 100 patients. AJR Am J Roentgenol. 2008;191:589–97.CrossRefPubMedGoogle Scholar
  35. 35.
    Prayer D, Grois N, Prosch H, et al. MR imaging presentation of intracranial disease associated with langerhans cell histiocytosis. Am J Neuroradiol. 2004;25:880–91.PubMedGoogle Scholar
  36. 36.
    Hamilton BE, Salzman KL, Osborn AG. Anatomic and pathologic spectrum of pituitary infundibulum lesions. AJR. 2007;188:W223–32.CrossRefPubMedGoogle Scholar
  37. 37.
    Supakul N, Delaney LR, Siddiqui AR, Jennings SG, Eugster EA, Karmazyn B. Ultrasound for primary imaging of congenital hypothyroidism. Am J Roentgenol. 2012;199:W360–6.CrossRefGoogle Scholar
  38. 38.
    Chang YW, Lee DH, Hong YH, Hong HS, Choi DL, Seo DY. Congenital hypothyroidism: analysis of discordant us and scintigraphic findings. Radiology. 2011;258:872–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Jakubowska A, Grajewska-Ferens M, Brzewski M, Sopylo B. Usefulness of imaging techniques in the diagnostics of precocious puberty in boys. Pol J Radiol. 2011;76:21–7.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Pectasides D, Pectasides E, Psyrri A. Granulosa cell tumor of the ovary. Cancer Treat Rev. 2008;34:1–12.CrossRefPubMedGoogle Scholar
  41. 41.
    Gittleman AM, Price AP, Coren C, Akhtar M, Donovan V, Katz DS. Radiology-pathology conference: juvenile granulosa cell tumor. J Clin Imag. 2003;27:221–4.CrossRefGoogle Scholar

Copyright information

© Dr. K C Chaudhuri Foundation 2019

Authors and Affiliations

  1. 1.Department of RadiodiagnosisAll India Institute of Medical SciencesNew DelhiIndia

Personalised recommendations