Advertisement

A concatenated construction of linear complementary pair of codes

  • Cem GüneriEmail author
  • Ferruh Özbudak
  • Elif Saçıkara
Article
  • 35 Downloads

Abstract

A concatenated construction for linear complementary dual codes was given by Carlet et al. using the so-called isometry inner codes. Here, we obtain a concatenated construction to the more general family, linear complementary pair of codes. Moreover, we extend the dual code description of Chen et al. for concatenated codes to duals of generalized concatenated codes. This allows us to use generalized concatenated codes for the construction of linear complementary pair of codes.

Keywords

Concatenated codes Generalized concatenated codes LCD codes LCP of codes 

Mathematics Subject Classification (2010)

94B05 

Notes

Acknowledgments

The authors are supported by TÜBİTAK project 215E200, which is associated with the SECODE project in the scope of CHIST-ERA Program.

References

  1. 1.
    Bhasin, S., Danger, J.-L., Guilley, S., Najm, Z., Ngo, X.T.: Linear complementary dual code improvement to strengthen encoded circuit against hardware Trojan horses, IEEE International Symposium on Hardware Oriented Security and Trust (HOST), May 5–7 (2015)Google Scholar
  2. 2.
    Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: The user language. J. Symbol. Comput. 24, 235–265 (1997)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bringer, J., Carlet, C., Chabanne, H., Guilley, S., Maghrebi, H.: Orthogonal direct sum masking - a smartcard friendly computation paradigm in a code with builtin protection against side-channel and fault attacks. In: WISTP, pp 40–56. Springer, Heraklion (2014)Google Scholar
  4. 4.
    Carlet, C., Guilley, S.: Complementary dual codes for counter-measures to side-channel attacks, Adv. Math. Commun. 10, 131–150 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Carlet, C., Mesnager, S., Tang, C., Qi, Y.: Euclidean and Hermitian LCD MDS codes, Des., Codes. Cryptogr. 86, 2605–2618 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Carlet, C., Mesnager, S., Tang, C., Qi, Y., Pellikaan, R.: Linear codes over \(\mathbb {F}_{q}\) are equivalent to LCD codes for q > 3. IEEE Trans. Inform. Theory 64, 3010–3017 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Carlet, C., Güneri, C., Özbudak, F., Özkaya, B., Solé, P.: On linear complementary pairs of codes. IEEE Trans. Inform. Theory 64, 6583–6589 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Carlet, C., Güneri, C., Özbudak, F., Solé, P.: A new concatenated type construction for LCD codes and isometry codes. Discrete Math. 341, 830–835 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chen, H., Ling, S., Xing, C.: Asymptotically good quantum codes exceeding the Ashikhmin-Litsyn-Tsfasman bound. IEEE Trans. Inform. Theory 47, 2055–2058 (2001)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cordaro, J.T., Wagner, T.: Optimum (n, 2) codes for small values of channel error probability. PGIT 13, 349–350 (1967)zbMATHGoogle Scholar
  11. 11.
    Dumer, I.: Concatenated codes and their multilevel generalizations, pp 1911–1988. Handbook of Coding Theory, North-Holland (1998)zbMATHGoogle Scholar
  12. 12.
    Dougherty, S.T., Kim, J. -L., Özkaya, B., Sok, L., Solé, P.: The combinatorics of LCD codes: Linear programming bound and orthogonal matrices. Int. J. Inform. Coding Theory 4(2/3), 116–128 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Güneri, C., Özkaya, B., Solé, P.: Quasi-cyclic complementary dual codes. Finite Fields Appl. 42, 67–80 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Li, C., Ding, C., Li, S.: LCD cyclic codes over finite fields. IEEE Trans. Inform. Theory 63, 4344–4356 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mesnager, S., Tang, C., Qi, Y.: Complementary dual algebraic geometry codes. IEEE Trans. Inform. Theory 64, 2390–2397 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sendrier, N.: Linear codes with complementary duals meet the Gilbert-Varshamov bound. Discrete Math. 285, 345–347 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Engineering and Natural SciencesSabancı UniversityİstanbulTurkey
  2. 2.Department of Mathematics and Institute of Applied MathematicsMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations