Advertisement

A class of constacyclic BCH codes

  • Zhonghua Sun
  • Shixin Zhu
  • Liqi WangEmail author
Article

Abstract

Constacyclic codes are a subclass of linear codes and have been well studied. Constacyclic BCH codes are a family of constacyclic codes and contain BCH codes as a subclass. Compared with the in-depth study of BCH codes, there are relatively little study on constacyclic BCH codes. The objective of this paper is to determine the dimension and minimum distance of a class of q-ary constacyclic BCH codes of length \(\frac {q^{m}-1}{q-1}\) with designed distances \(\delta _{i}=q^{m-1}-\frac {q^{\lfloor \frac {m-3}2 \rfloor +i }-1}{q-1}\) for \(1\leq i\leq \min \limits \{\lceil \frac {m+1}2 \rceil -\lfloor \frac {m}{q+1} \rfloor , \lceil \frac {m-1}2 \rceil \}\). As will be seen, some of these codes are optimal.

Keywords

Constacyclic code BCH code Minimum distance 

Mathematics Subject Classification (2010)

94B05 94B15 

Notes

Acknowledgements

The authors are grateful to the anonymous reviewers for careful reading and for valuable suggestions. Thank the reviewer for generously sharing the Magma programs with us so that we can check the correctness of the results in the text.

References

  1. 1.
    Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS Codes. IEEE Trans. Inf. Theory 61(3), 1474–1484 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Delsarte, P.: On subfield subcodes of modified Reed-Solomon codes (Corresp.) IEEE Trans. Inf. Theory 21(5), 575–576 (1975)zbMATHCrossRefGoogle Scholar
  3. 3.
    Ding, C.: Parameters of several classes of BCH codes. IEEE Trans. Inf. Theory 61(10), 5322–5330 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Ding, C., Du, X., Zhou, Z.: The bose and Minimum distance of a class of BCH codes. IEEE Tans. Inf. Theory 61(5), 2351–2356 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Ding, C., Fan, C., Zhou, Z.: The dimension and minimum distance of two classes of primitive BCH codes. Finite Fields Appl. 45, 237–263 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Ding, C., Li, C., Li, N., Zhou, Z.: Three-weight cyclic codes and their weight distributions. Discrete Math. 339(2), 415–427 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Ding, C., Yang, J.: Hamming weights in irreducible cyclic codes. Discrete Math. 313(4), 434–446 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Dodunekov, S.M., Yorgov, V.I.: Note on the weight distribution for constacyclic codes. Problemy Peredachi Inf. 17(2), 102–103 (1981)Google Scholar
  9. 9.
    Feng, F., Luo, J.: Weight distribution of some reducible cyclic codes. Finite Fields Appl. 14(2), 390–409 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Gao, J., Fu, F.: Note on quasi-twisted codes and an application. J. Appl. Math. Comput. 47(1-2), 487–506 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Grover, P., Bhandari, A.K.: A note on the weight distribution of minimal constacyclic codes. Bull. Malays. Math. Sci. Soc. 39(2), 689–697 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Heng, Z., Yue, Q.: Several classes of cyclic codes with either optimal three weights or a few weights. IEEE Trans. Inf. Theory 62(8), 4501–4513 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Heng, Z., Yue, Q.: Complete weight distributions of two classes of cyclic codes. Cryptogr. Commun. 9(3), 323–343 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Hughes, G.: Constacyclic codes, cocycles and a u + υ|uυ construction. IEEE Trans. Inf. Theory 46(2), 674–680 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge Univ. Press, Cambridge (2003)zbMATHCrossRefGoogle Scholar
  16. 16.
    Huo, Y., Wan, Z.: Non-symmetric association schemes of symmetric matrices. Acta Math. Appl. Sinica 9(3), 236–255 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Jensen, J.M.: A class of constacyclic codes. IEEE Trans. Inf. Theory 40(3), 951–954 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Kai, X., Zhu, S., Li, P.: A construction of new MDS symbol-pair codes. IEEE Trans. Inf. Theory 61(11), 5828–5834 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Kasami, T.: Weight distributions of Bose-Chaudhuri-Hocquenghem codes. In: Bose, R.C., Dowlings, T.A. (eds.) Combinatorial Mathematics and Applications. Ch. 20. Univ. North Carolina Press, Chapel Hill (1969)Google Scholar
  21. 21.
    Katz, D.J.: Wei sums of binomials, three-level cross-correlation, and a conjecture of Helleseth. J. Comb. Theory Ser. A 119, 1644–1659 (2012)zbMATHCrossRefGoogle Scholar
  22. 22.
    Krishna, A., Sarwate, D.V.: Pseudocyclic maximum-distance-separable codes. IEEE Trans. Inf. Theory 36(4), 880–884 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    La Guardia, G.G.: On optimal constacyclic codes. Linear Algebra Appl. 496, 594–610 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Li, C., Yue, Q., Li, F.: Hamming weights of the duals of cyclic codes with two zeros. IEEE Trans. Inf. Theory 60(7), 3895–3902 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Li, C., Yue, Q., Li, F.: Weight distributions of cyclic codes with respect to pairwise coprime order elements. Finite Fields Appl. 28, 94–114 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  27. 27.
    Li, F., Yue, Q.: The primitive idempotents and weight distributions of irreducible constacyclic codes. Des. Codes Cryptogr. 86(4), 771–784 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Li, F., Yue, Q., Liu, F.: The weight distributions of constacyclic codes. Adv. Math. Commun. 11(3), 471–480 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Li, S.: The minimum distance of some narrow-sense primitive BCH codes. SIAM J. Discrete Math. 31(4), 2530–2569 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Li, S., Ding, C., Xiong, M., Ge, G.: Narrow-sense BCH codes over GF(q) with length \(n=\frac {q^{m}-1}{q-1}\). IEEE Trans. Inf. Theory 63(11), 7219–7236 (2017)zbMATHCrossRefGoogle Scholar
  31. 31.
    Li, S., Feng, T., Ge, G.: On the weight distribution of cyclic codes with Niho exponents. IEEE Trans. Inf. Theory 60(7), 3903–3912 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Li, S., Ge, G.: Constructions of maximum distance separable symbol-pair codes using cyclic and constacyclic codes. Des. Codes Cryptogr. 84(3), 359–372 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Liu, Y., Li, R., Lv, L., Ma Y.: A class of constacyclic BCH codes and new quantum codes. Quantum Information Processing,  https://doi.org/10.1007/s11128-017-1533-y (2017)
  34. 34.
    Lin, X.: Quantum cyclic and constacyclic codes. IEEE Trans. Inf. Theory 50(3), 547–549 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Ling, X., Mesnager, S., Qi, Y., Tang, C.: A class of narrow-sense BCH codes over \(\mathbb {F}_{q}\) of length \(\frac {q^{m}-1}2\). arXiv:1903.06779 (2019)
  36. 36.
    Luo, J., Feng, K.: On the weight distributions of two classes of cyclic codes. IEEE Trans. Inf. Theory 54(12), 5332–5344 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Luo, J., Tang, Y., Wang, H.: Cyclic codes and sequences: The generalized Kasami case. IEEE Trans. Inf. Theory 56(5), 2130–2142 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Luo, J., Tang, Y., Wang, H.: Exponential sums, cyclic codes and sequences: The odd character Kasami case. arXiv:0902.4508v1 (2009)
  39. 39.
    McEliece, R.J.: Irreducible cyclic codes and Gauss sums, in combinatorics, par 1: Theory of designs, finite geometry and coding theory. Amsterdam, The Netherlands: Math. Centrum 55, 179–196 (1974)Google Scholar
  40. 40.
    Schmidt, K.U.: Symmetric bilinear forms over finite fields with applications to coding theory. J. Algebraic Combin. 42(2), 635–670 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Shi, M., Zhang, Y., Solé, P.: Two new families of two-weight codes. IEEE Trans. Inf. Theory 63(10), 6240–6246 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Wan, Z.: Lectures on Finite Fields and Galois Rings. World Scientific (2003)Google Scholar
  43. 43.
    Wang, Y., Wang, C., Ma, C., Ma, J.: Association schemes of quadratic forms and symmetric bilinear forms. J. Algebraic Combin. 17(2), 149–161 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Wolfmann, J.: Projective two-weight irreducible cyclic and constacyclic codes. Finite Fields Appl. 14(2), 351–360 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Xiong, M.: The weight distributions of a class of cyclic codes. Finite Fields Appl. 18(5), 933–945 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Yang, S., Yao, Z., Zhao, C.: The weight distributions of two classes of p-ary cyclic codes with few weights. Finite Fields Appl. 14, 76–91 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Yuan, J., Carlet, C., Ding, C.: The weight distribution of a class of linear codes from perfect nonlinear functions. IEEE Trans. Inf. Theory 52(2), 712–717 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Zhu, S., Sun, Z., Kai, X.: A class of narrow-sense BCH codes. IEEE Trans. Inf. Theory 65(8), 4699–4714 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Zeng, X., Liu, J.Q., Hu, L.: Generalized Kasami sequences: The large set. IEEE Trans. Inf. Theory 53(7), 2587–2598 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Zhang, T., Ge, G.: Some new classes of quantum MDS codes from constacyclic codes. IEEE Trans. Inf. Theory 61(9), 5224–5228 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Zhou, Z., Ding, C.: A class of three-weight cyclic codes. Finite Fields Appl. 25, 79–93 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Zhou, Z., Ding, C.: Seven classes of three-weight cyclic codes. IEEE Trans. Inf. Theory 61(10), 4120–4126 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of MathematicsHefei University of TechnologyHefeiChina

Personalised recommendations