Advertisement

Decimated m-sequences families with optimal partial Hamming correlation

  • Hongyu HanEmail author
  • Sheng Zhang
  • Limengnan Zhou
  • Xing Liu
Article
  • 9 Downloads
Part of the following topical collections:
  1. Special Issue on Sequences and Their Applications

Abstract

In quasi-synchronous frequency-hopping multiple-access systems where relative delays are restricted within a certain zone, low hit zone frequency-hopping sequences (LHZ FHSs) with favorable partial Hamming correlation properties are desirable. In this paper, we present a new class of LHZ FHS sets with optimal partial Hamming correlation based on t-decimation of m-sequence.

Keywords

Frequency-hopping sequence Low hit zone Quasi-synchronous multiple-access system m-sequence Decimated sequence 

Mathematics Subject Classification (2010)

94A55 94B05 

Notes

Acknowledgements

This work is supported by the National Science Foundation of China (Grant No. 61701331), the Project of Sichuan Education Department (Grant No. 18ZB0496), the Fundamental Research Funds for the Central Universities (Grant No. 2682018CX22), and the Youth Innovative Talent Project of Guangdong Education Department (Grant No. 2017KQNCX242).

References

  1. 1.
    Specification of the bluetooth systems-core. The Bluetooth Special Interest Group (SIG), [online]. Available: http://www.bluetooth.com
  2. 2.
    Cai, H., Zhou, Z.C., Yang, Y., Tang, X.H.: A new construction of frequency-hopping sequences with optimal partial Hamming correlation. IEEE Trans. Inf. Theory 60, 5782–5790 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chen, H.H.: The Next Generation CDMA Technologies. Wiley, London (2007)CrossRefGoogle Scholar
  4. 4.
    Chung, J.H., Yang, K.: New classes of optimal low-hit-zone frequency-hopping sequence sets by Cartesian product. IEEE Trans. Inf. Theory 59, 726–732 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ding, C., Fuji-Hara, R., Fujiwara, Y., Jimbo, M., Mishima, M.: Sets of frequency hopping sequences: Bounds and optimal constructions. IEEE Trans. Inf. Theory 55, 3297–3304 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Eun, Y.C., Jin, S.Y., Hong, Y.P., Song, H.Y.: Frequency hopping sequences with optimal partial autocorrelation properties. IEEE Trans. Inf. Theory 50, 2438–2442 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fan, P.Z., Darnell, M.: Sequence Design for Communications Applications. Wiley, London (1996)Google Scholar
  8. 8.
    Ge, G., Miao, Y., Yao, Z.: Optimal frequency hopping sequences: Auto- and cross-correlation properties. IEEE Trans. Inf. Theory 55, 867–879 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Golomb, S.W., Gong, G.: Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar. Cambridge University Press, UK (2005)CrossRefzbMATHGoogle Scholar
  10. 10.
    Han, H.Y., Peng, D.Y., Liu, X.: On low-hit-zone frequency-hopping sequence sets with optimal partial Hamming correlation. In: Proc. of the 8th International Conference on Sequences and Their Applications, pp. 293–304 (2014)Google Scholar
  11. 11.
    Han, H.Y., Peng, D.Y., Parampalli, U., Ma, Z., Liang, H.B.: Construction of low-hit-zone frequency hopping sequences with optimal partial Hamming correlation by interleaving techniques. Des. Codes Crypt. 84, 401–414 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Han, H.Y., Peng, D.Y., Parampalli, U.: New sets of optimal low-hit-zone frequency-hopping sequences based on m-sequences. Cryptogr. Commun. 9, 511–522 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lempel, A., Greenberger, H.: Families of sequences with optimal Hamming correlation properties. IEEE Trans. Inf. Theory 20, 90–94 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Liu, X., Peng, D.Y., Han, H.Y.: Low-hit-zone frequency hopping sequence sets with optimal partial Hamming correlation properties. Des. Codes Crypt. 73, 167–176 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Liu, X., Zhou, L.: New bound on partial Hamming correlation of low-hit-zone frequency hopping sequences and optimal constructions. IEEE Commun. Lett. 22, 878–881 (2018)CrossRefGoogle Scholar
  16. 16.
    Ma, W.P., Sun, S.H.: New designs of frequency hopping sequences with low hit zone. Des. Codes Crypt. 60, 145–153 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Niu, X.H., Peng, D.Y., Liu, F., Liu, X.: Lower bounds on the maximum partial correlations of frequency hopping sequence set with low hit zone. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E93-A, 2227–2231 (2010)CrossRefzbMATHGoogle Scholar
  18. 18.
    Niu, X.H., Peng, D.Y., Zhou, Z.C.: Frequency/time hopping sequence sets with optimal partial Hamming correlation properties. Science in China:, Series F Information Sciences 55, 2207–2215 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Niu, X.H., Peng, D.Y., Zhou, Z.C.: New classes of optimal frequency hopping sequences with low hit zone. Adv. Math. Commun. 7, 293–310 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Peng, D.Y., Fan, P.Z.: Lower bounds on the Hamming auto- and cross correlations of frequency-hopping sequences. IEEE Trans. Inf. Theory 50, 2149–2154 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Peng, D.Y., Fan, P.Z., Lee, M.H.: Lower bounds on the periodic Hamming correlations of frequency hopping sequences with low hit zone. Science in China:, Series F Information Sciences 49, 1–11 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Simon, M.K., Omura, J.K., Scholtz, R.A., Levitt, B.K.: Spread Spectrum Communications Handbook. McGraw-Hill, New York (2001)Google Scholar
  23. 23.
    Wang, C.Y., Peng, D.Y., Han, H.Y., Zhou, L.M.N.: New sets of low-hit-zone frequency-hopping sequence with optimal maximum periodic partial Hamming correlation. Science China Information Sciences 58, 1–15 (2015)Google Scholar
  24. 24.
    Wang, C.Y., Peng, D.Y., Niu, X.H., Han, H.Y.: Optimal construction of frequency-hopping sequence sets with low-hit-zone under periodic partial Hamming correlation. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E100-A, 304–307 (2017)CrossRefGoogle Scholar
  25. 25.
    Yang, L., Giannakis, G.B.: Ultra-wideband communications: an idea whose time has come. IEEE Signal Process. Mag. 21, 26–54 (2004)CrossRefGoogle Scholar
  26. 26.
    Zeng, X.Y., Cai, H., Tang, X.H., Yang, Y.: A class of optimal frequency hopping sequences with new parameters. IEEE Trans. Inf. Theory 58, 4899–4907 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Zhou, Z.C., Tang, X.H., Niu, X.H., Parampalli, U.: New classes of frequency-hopping sequences with optimal partial correlation. IEEE Trans. Inf. Theory 58, 453–458 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Zhou, L.M.N., Peng, D.Y., Liang, H.B., Wang, C.Y., Han, H.Y.: Generalized methods to construct low-hit-zone frequency-hopping sequence sets and optimal constructions. Cryptogr. Commun. 9, 707–728 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hongyu Han
    • 1
    Email author
  • Sheng Zhang
    • 2
  • Limengnan Zhou
    • 3
  • Xing Liu
    • 4
  1. 1.School of Computer ScienceSichuan Normal UniversityChengduChina
  2. 2.School of Information Science and TechnologySouthwest Jiaotong UniversityChengduChina
  3. 3.School of Electronic and Information EngineeringUniversity of Electronic Science and Technology of China Zhongshan InstituteZhongshanChina
  4. 4.College of Electrical Engineering and Information TechnologySichuan UniversityChengduChina

Personalised recommendations