Designed distances and parameters of new LCD BCH codes over finite fields

  • Fengwei LiEmail author
  • Qin Yue
  • Yansheng Wu


Let \(\mathbb {F}_{q}\) be the finite field of q elements and n = qm − 1 with m a positive integer. In this paper we construct a class of BCH and LCD BCH codes of length n over \(\mathbb {F}_{q}\) and investigate their dimensions and designed distance. Our results show that the designed distances of BCH and LCD BCH codes in this paper are larger than those in [11, Theorems 7, 10, 18, and 22]. It is viewed as a generalized result of [11].


BCH code Cyclic code Linear code LCD code 

Mathematics Subject Classification (2010)

94B15 11T71 11T24 



The paper was supported by National Natural Science Foundation of China under Grants 11601475, 61772015 and Foundation of Science and Technology on Information Assurance Labo- ratory under Grant KJ-17-010.


  1. 1.
    Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Charpin, P.: On a class of primitive BCH-codes. IEEE Trans. Inf. Theory 36(1), 222–228 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Carlet, C., Guilley, S.: Complementary dual codes for counter-measures to side-channel attacks. Adv. Math. Commun. 10, 131–150 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ding, C.: Parameters of several classes of BCH codes. IEEE Trans. Inf. Theory 61(10), 5322–5330 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ding, C., Du, X., Zhou, Z.: The Bose and minimum distance of a class of BCH codes. IEEE Trans. Inf. Theory 61(5), 2351–2356 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dougherty, S.T., Kim, J. -L., ÖZkaya, B., Sok, L., Solè, P.: The combinatorics of LCD codes: Linear Programming bound and orthogonal matrices. Int. J. Inf. Coding Theory 4, 116–128 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dianwu, Y., Zhengming, H.: On the dimension and minimum distance of BCH codes over GF(q). J. Electron. 13(3), 216–221 (1996)Google Scholar
  8. 8.
    Hou, X., Oggier, F.: On LCD codes and lattices. In: Proceedings of IEEE Int. Symp. Inf. Theory, pp. 1501–1505 (2016)Google Scholar
  9. 9.
    Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting codes. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  10. 10.
    Li, C., Ding, C., Li, S.: LCD Cyclic codes over finite field. IEEE Trans. Inf. Theory 63(7), 4344–4356 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Li, S., Li, C., Ding, C.: Two Families of LCD BCH codes. IEEE Trans. Inf. Theory 63(9), 5699–5717 (2017)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Liu, H., Ding, C., Li, C.: Dimensions of three types of BCH codes over GF(q). Discrete Math. 340, 1910–1927 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Massey, J.L.: Reversible codes. Inf. Control. 7(3), 369–380 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Massey, J.L.: Linear codes with complementary duals. Discrete Math. 106(/107), 337–342 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. Elsevier, North- Holland (1977)zbMATHGoogle Scholar
  16. 16.
    Sendrier, N.: Linear codes with complementary duals meet the Gilbert-Varshamov bound. Discret. Math. 285, 345–347 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Tzeng, K.K., Hartmann, C.R.P.: On the minimum distance of certain reversible cyclic codes. IEEE Trans. Inf. Theory 16, 644–646 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Yan, H., Liu, H., Li, C., Yang, S.: Parameters of LCD BCH codes with two lengths. Adv. Math. Commun. 12(3), 579–594 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Yang, X., Massey, J.L.: The condition for a cyclic code to have a complementary dual. Discret. Math. 126, 391–393 (1994)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsZaozhuang UniversityZaozhuangPeople’s Republic of China
  2. 2.State Key Laboratory of CryptologyBeijingPeople’s Republic of China
  3. 3.Department of MathematicsNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China

Personalised recommendations