Cryptography and Communications

, Volume 11, Issue 6, pp 1233–1245 | Cite as

Generalized bent functions into \(\mathbb {Z}_{p^{k}}\) from the partial spread and the Maiorana-McFarland class

  • Wilfried MeidlEmail author
  • Alexander Pott
Part of the following topical collections:
  1. Special Issue on Boolean Functions and Their Applications


Functions f from \({\mathbb {F}_{p}^{n}}\), n = 2m, to \(\mathbb {Z}_{{p}^{k}}\) for which the character sum \(\mathcal {H}^{k}_{f}(p^{t},u)=\sum\limits _{x\in {\mathbb {F}_{p}^{n}}}\zeta _{p^{k}}^{p^{t}f(x)}\zeta _{p}^{u\cdot x}\) (where \(\zeta _{q} = e^{2\pi i/q}\) is a q-th root of unity), has absolute value \(p^{m}\) for all \(u\in {\mathbb {F}_{p}^{n}}\) and \(0\le t\le k-1\), induce relative difference sets in \({\mathbb {F}_{p}^{n}}\times \mathbb {Z}_{{p}^{k}}\) hence are called bent. Functions only necessarily satisfying \(|\mathcal {H}^{k}_{f}(1,u)| = p^{m}\) are called generalized bent. We show that with spreads we not only can construct a variety of bent and generalized bent functions, but also can design functions from \({\mathbb {F}_{p}^{n}}\) to \(\mathbb {Z}_{{p}^{m}}\) satisfying \(|\mathcal {H}_{f}^{m}(p^{t},u)| = p^{m}\) if and only if \(t\in T\) for any \(T\subset \{0,1\ldots ,m-1\}\). A generalized bent function can also be seen as a Boolean (p-ary) bent function together with a partition of \({\mathbb {F}_{p}^{n}}\) with certain properties. We show that the functions from the completed Maiorana-McFarland class are bent functions, which allow the largest possible partitions.


Bent function Generalized bent function Partial spread Maiorana-McFarland Walsh transform Relative difference set 

Mathematics Subject Classification (2010)

06E30 05B10 94C10 



W.M. is supported by the FWF Project P 30966.


  1. 1.
    Baum, L., Neuwirth, L.: Decompositions of vector spaces over GF(2) into disjoint equidimensional affine spaces. J. Combin. Theory Ser. A 18, 88–100 (1975)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Carlet, C., et al.: On bent and highly non-linear balanced/resilient functions and their algebraic immunities. In: Fossorier, M. P. C. (ed.) AAECC, Lecture notes in computer science 3857, pp 1–28. Springer-Verlag, New York (2006)Google Scholar
  3. 3.
    Carlet, C.: Two new classes of bent functions. In: Advances in Cryptology–EUROCRYPT93, Lecture Notes Comput. Sci 765, pp.77–101, Springer-Verlag (1994)Google Scholar
  4. 4.
    Hodzić, S., Meidl, W., Pasalic, E.: Full characterization of generalized bent functions as (semi)-bent spaces, their dual, and the Gray image. IEEE Trans. Inform. Theory 64, 5432–5440 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Kolomeec, N.: Enumeration of the bent functions of least deviation from a quadratic bent function. J. Appl. Ind. Math. 6, 306–317 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kolomeec, N.: The graph of minimal distances of bent functions and its properties. Des. Codes Cryptogr. 85, 395–410 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kumar, P. V., Scholtz, R. A., Welch, L. R.: Generalized bent functions and their properties. J. Combin. Theory Ser. A 40, 90–107 (1985)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Martinsen, T., Meidl, W., Stanica, P.: Generalized bent functions and their gray images. In: Arithmetic of finite fields, Lecture Notes in Comput. Sci., 10064, pp 160–173. Springer, Cham (2016)Google Scholar
  9. 9.
    Martinsen, T., Meidl, W., Stanica, P.: Partial spread and vectorial generalized bent functions. Des. Codes Cryptogr. 85, 1–13 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Meidl, W.: A secondary construction of bent functions, octal gbent functions and their duals. Math. Comput. Simulation 143, 57–64 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Mesnager, S., Tang, C., Qi, Y., Wang, L., Wu, B., Feng, K.: Further results on generalized bent functions and their complete characterization. IEEE Trans. Inform. Theory 64, 5441–5452 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Mesnager, S.: Several new infinite families of bent functions and their duals. IEEE Trans. Inform. Theory 60(7), 4397–4407 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nyberg, K.: Perfect nonlinear S-boxes. In: Advances in cryptology–EUROCRYPT ’91 (Brighton, 1991), Lecture Notes in Comput. Sci., 547, pp 378–386. Springer, Berlin (1991)Google Scholar
  14. 14.
    Potapov, V.: On minimal distance of q-ary bent functions. In: Problems of redundancy in information and control systems, pp. 115–116, IEEE (2016)Google Scholar
  15. 15.
    Pott, A.: Nonlinear functions in abelian groups and relative difference sets. Discret. Appl. Math. 138, 177–193 (2004)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Pott, A.: A survey on relative difference sets. Groups, difference sets, and the Monster. In: Ohio State Univ. Math. Res. Inst. Publ., 4, pp. 195–232, de Gruyter, Berlin (1996)Google Scholar
  17. 17.
    Schmidt, B.: On (p a,p b,p a,p ab)-relative difference sets. J. Algebraic Combin. 6, 279–297 (1997)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Schmidt, K. U.: Quaternary constant-amplitude codes for multicode CDMA. IEEE Trans. Inform. Theory 55, 1824–1832 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Tang, C., Xiang, C., Qi, Y., Feng, K.: Complete characterization of generalized bent and 2k-bent Boolean functions. IEEE Trans. Inform. Theory 63, 4668–4674 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Johann Radon Institute for Computational and Applied MathematicsAustrian Academy of SciencesLinzAustria
  2. 2.Faculty of MathematicsOtto von Guericke UniversityMagdeburgGermany

Personalised recommendations