Advertisement

New bounds for linear codes of covering radii 2 and 3

  • Daniele Bartoli
  • Alexander A. Davydov
  • Massimo Giulietti
  • Stefano Marcugini
  • Fernanda Pambianco
Article
  • 4 Downloads
Part of the following topical collections:
  1. Special Issue on Coding Theory and Applications

Abstract

The length function q(r, R) is the smallest length of a q-ary linear code of covering radius R and codimension r. In this work we obtain new upper bounds on q(2t + 1,2), q(3t + 1,3), q(3t + 2,3), t ≥ 1. In particular, we prove that

$$\ell_{q}(3,2)\le\sqrt{q(3\ln q+\ln\ln q)}+\sqrt{\frac{q}{3\ln q}}+ 3~\text{ for all } q, $$
\(\ell _{q}(3,2)\le 1.05\sqrt {3q\ln q}\) for q ≤ 321007, \(\ell _{q}(4,3)<2.8\sqrt [3]{q\ln q}\) for q ≤ 6229, and \(\ell _{q}(5,3)<3\sqrt [3]{q^{2}\ln q}\) for q ≤ 761. The new bounds on q(2t + 1,2), q(3t + 1,3), q(3t + 2,3), t > 1, are then obtained by lift-constructions. For q a non-square the new bound on q(2t + 1,2) improves the previously known ones. For many values of q≠(q)3 and r ≠ 3t we provide infinite families of [n, nr]q3 codes showing that \(\ell _{q}(r,3)\thickapprox c\sqrt [3]{\ln q}\cdot q^{(r-3)/3}\), where c is a universal constant. As far as it is known to the authors, such families have not been previously described in the literature.

Keywords

Covering codes Saturating sets The length function Upper bounds Projective spaces 

Mathematics Subject Classification (2010)

94B05 51E21 51E22 

Notes

Acknowledgements

The research of D. Bartoli, M. Giulietti, S. Marcugini, and F. Pambianco was supported in part by Ministry for Education, University and Research of Italy (MIUR) (Project “Geometrie di Galois e strutture di incidenza”), by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INDAM), and by University of Perugia (Projects ”Configurazioni Geometriche e Superfici Altamente Simmetriche” and ”Codici lineari e strutture geometriche correlate”, Base Research Fund 2015). The research of A.A. Davydov was carried out at the IITP RAS at the expense of the Russian Foundation for Sciences (project 14-50-00150). This work has been carried out using computing resources of the federal collective usage center Complex for Simulation and Data Processing for Mega-science Facilities at NRC Kurchatov Institute, http://ckp.nrcki.ru/. The authors would like to thank the anonymous referees for their helpful comments and suggestions which improved this paper.

References

  1. 1.
    Bartoli, D., Davydov, A.A., Faina, G., Kreshchuk, A.A., Marcugini, S., Pambianco, F.: Tables, bounds and graphics of the smallest known sizes of complete arcs in the plane PG(2, q) for all q ≤ 160001 and sporadic q in the interval [160801…430007]. arXiv:1312.2155v3 (2015)
  2. 2.
    Bartoli, D., Davydov, A.A., Faina, G., Kreshchuk, A.A., Marcugini, S., Pambianco, F.: Tables, bounds and graphics of sizes of complete lexiarcs in the plane PG(2, q) for all q ≤ 301813 and sporadic q in the interval [301897…430007] obtained by an algorithm with fixed order of points (FOP). arXiv:1404.0469v2 (2015)
  3. 3.
    Bartoli, D., Davydov, A.A., Faina, G., Kreshchuk, A.A., Marcugini, S., Pambianco, F.: Upper bounds on the smallest size of a complete arc in a finite Desarguesian projective plane based on computer search. J. Geometry 107(1), 89–117 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bartoli, D., Davydov, A.A., Faina, G., Kreshchuk, A.A., Marcugini, S., Pambianco, F.: Tables, bounds and graphics of sizes of complete arcs in the plane PG(2, q) for all q ≤ 321007 and sporadic q in [323761…430007] obtained by an algorithm with fixed order of points (FOP). arXiv:1404.0469v3 (2018)
  5. 5.
    Bartoli, D., Davydov, A.A., Giulietti, M., Marcugini, S., Pambianco, F.: On upper bounds on the smallest size of a saturating set in a projective plane. arXiv:1505.01426 (2015)
  6. 6.
    Bartoli, D., Davydov, A.A., Giulietti, M., Marcugini, S., Pambianco, F.: New Upper Bounds on the Smallest Size of a Saturating Set in a Projective Plane. In: 2016 XV International Symposium Problems of Redundancy in Information and Control Systems (REDUNDANCY). pp. 18–22. IEEE, St. Petersburg, Russia, Sept. 2016. http://ieeexplore.ieee.org/document/7779320. Accessed 22 August 2018 (2016)
  7. 7.
    Bartoli, D., Davydov, A.A., Giulietti, M., Marcugini, S., Pambianco, F.: New Bounds for Linear Codes of Covering Radius 2. In: Barbero, Á.I., Skachek, V., Ytrehus, Ø. (eds.) Proceedings 5Th International Castle Meeting, ICMCTA 2017, Coding Theory and Applications, Vihula, Estonia, Aug. 2017, pp. 1–10, Lecture Notes in Computer Science, Vol. 10495. Springer, Cham (2017)Google Scholar
  8. 8.
    Bartoli, D., Davydov, A.A., Marcugini, S., Pambianco, F.: Tables, bounds and graphics of short linear codes with covering radius 3 and codimension 4 and 5. arXiv:1712.07078v3 (2018)
  9. 9.
    Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3–4), 235–265 (1997)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Brualdi, R.A., Pless, V.S.: Greedy codes. J. Combin. Theory, Ser. A 64(1), 10–30 (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Brualdi, R.A., Litsyn, S., Pless, V.S.: Covering Radius. In: Pless, V. S., Huffman, W. C., Brualdi, R. (eds.) Handbook of Coding Theory, Vol. 1, pp. 755-826. Elsevier, Amsterdam (1998)Google Scholar
  12. 12.
    Cohen, G., Honkala, I., Litsyn, S., Lobstein, A.: Covering codes. Elsevier, Amsterdam (1997)zbMATHGoogle Scholar
  13. 13.
    Davydov, A.A.: Constructions and families of nonbinary linear codes with covering radius 2. IEEE Trans. Inform. Theory 45(5), 1679–1686 (1999)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Davydov, A.A., Giulietti, M., Marcugini, S., Pambianco, F.: Linear Covering Codes over Nonbinary Finite Fields. In: Proceedings XI International workshop on algebraic and combintorial coding theory, ACCT2008. Pp. 70–75. Pamporovo, Bulgaria, June 2008. http://www.moi.math.bas.bg/acct2008/b12.pdf. Accessed 22 August 2018 (2008)
  15. 15.
    Davydov, A.A., Giulietti, M., Marcugini, S., Pambianco, F.: Linear Covering Codes of Radius 2 and 3. In: Procedings workshop coding theory days in St. Petersburg, pp. 12–17. St. PeterSburg, Russia http://iitp.ru/upload/publications/1538/CoverPeter2008.pdf. Accessed 22 August 2018 (2008)
  16. 16.
    Davydov, A.A., Giulietti, M., Marcugini, S., Pambianco, F.: Linear nonbinary covering codes and saturating sets in projective spaces. Adv. Math. Commun. 5(1), 119–147 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Davydov, A.A., Marcugini, S., Pambianco, F.: On saturating sets in projective spaces. J. Combin. Theory, Ser. A 103(1), 1–15 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Davydov, A.A., ÖStergård, P.R.J.: Linear codes with covering radius R = 2, 3 and codimension t R. IEEE Trans. Inform. Theory 47(1), 416–421 (2001)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Davydov, A.A., ÖStergård, P.R.J.: Linear codes with covering radius 3. Des. Codes Cryptogr. 54(3), 253–271 (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Etzion, T., Storme, L.: Galois geometries and coding theory. Des. Codes Cryptogr. 78(1), 311–350 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Giulietti, M.: The geometry of covering codes: small complete caps and saturating sets in galois spaces. In: Blackburn, S.R., Holloway, R., Wildon, M. (eds.) Surveys in Combinatorics 2013, London Math. Soc. Lecture Note Series, Vol. 409, pp. 51-90. Cambridge University Press, Cambridge (2013)Google Scholar
  22. 22.
    Hirschfeld, J.W.P.: Projective geometries over finite fields. Oxford mathematical monographs, 2nd. Clarendon Press, Oxford (1998)Google Scholar
  23. 23.
    Hirschfeld, J.W.P., Storme, L.: The packing problem in statistics, coding theory and finite projective spaces. J Statist Plann Inference 72(1), 355–380 (1998)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Hirschfeld, J.W.P., Storme, L.: The Packing Problem in Statistics, Coding Theory and Finite Geometry: Update 2001. In: Blokhuis, A., Hirschfeld, J.W.P. (eds.) Proceedings of the 4th isle of thorns conference finite geometries, developments of mathematics, Vol. 3, Chelwood Gate, 2000, pp. 201–246. Kluwer Academic Publisher, Boston (2001)Google Scholar
  25. 25.
    Klein, A., Storme, L.: Applications of finite geometry in coding theory and cryptography. In: Crnković, D., Tonchev, V. (eds.) NATO science for peace and security, Ser. - D: information and communication security, vol. 29, information security, coding theory and related combinatorics, pp. 38–58 (2011)Google Scholar
  26. 26.
    Kiss, G., Kóvacs, I., Kutnar, K., Ruff, J., Šparl, P.: A note on a geometric construction of large Cayley graphs of given degree and diameter. Studia Univ. Babes-Bolyai Mathematica 54(3), 77–84 (2009)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Landjev, I., Storme, L.: Galois geometry and coding theory. In: De Beule, J., Storme, L. (eds.) Current Research Topics in Galois Geometry, Chapter 8, pp. 187-214. NOVA Academic Publisher, New York (2012)Google Scholar
  28. 28.
    Lobstein, A.: Covering radius, an online bibliography https://www.lri.fr/lobstein/bib-a-jour.pdf. Accessed 22 August 2018 (2018)
  29. 29.
    Monroe, L., Pless, V.: Greedy Generation of Non-Binary Codes. In: Proceedings IEEE international symposium inform. Theory, ISIT 1995, p. 235, Whistler, BC, Canada, Sept. 1995 (1995)Google Scholar
  30. 30.
    Nagy, Z.L.: Saturating sets in projective planes and hypergraph covers. Discrete Math. 341(4), 1078–1083 (2018)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Pless, V.S.: Coding Constructions. In: Pless, V.S., Human, W.C., Brualdi, R. (eds.) Handbook of coding theory, pp 141–176. Elsevier, Amsterdam (1998)Google Scholar
  32. 32.
    Ughi, E.: Saturated configurations of points in projective Galois spaces. Europ. J. Combin. 8(3), 325–334 (1987)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and Computer SciencePerugia UniversityPerugiaItaly
  2. 2.Institute for Information Transmission Problems (Kharkevich institute)Russian Academy of SciencesMoscowRussia

Personalised recommendations