Advertisement

Decomposition of permutations in a finite field

  • Svetla NikovaEmail author
  • Ventzislav Nikov
  • Vincent Rijmen
Article
  • 59 Downloads
Part of the following topical collections:
  1. Special Issue: Mathematical Methods for Cryptography

Abstract

We describe a method to decompose any power permutation, as a sequence of power permutations of lower algebraic degree. As a result we obtain decompositions of the inversion in GF(2n) for small n from 3 up to 16, as well as for the APN functions, when n = 5. More precisely, we find decompositions into quadratic power permutations for any n not multiple of 4 and decompositions into cubic power permutations for n multiple of 4. Finally, we use the Theorem of Carlitz to prove that for 3 ≤ n ≤ 16 any n-bit permutation can be decomposed in quadratic and cubic permutations.

Keywords

Boolean functions S-Box Power permutations Threshold implementation 

Mathematics Subject Classification (2010)

94A60 94C10 

Notes

Acknowledgements

This work was supported in part by the Research Council KU Leuven: C16/15/058 and OT/13/071, and by the NIST Research Grant 60NANB15D346.

References

  1. 1.
    Aksoy, E., Cesmelioglu, A., Meidl, W., Topuzoglu, A.: On the Carlitz rank of a permutation polynomial. Finite Fields Appl. 15, 428–440 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Beth, T., Ding, C.: On almost perfect nonlinear permutations, EUROCRYPT LNCS 765, pp 65–76. Springer, Berlin (1993)Google Scholar
  3. 3.
    Bilgin, B., Nikova, S., Rijmen, V., Nikov, V., Stutz, G.: Threshold implementations of all 33 and 44 S-boxes, CHES LNCS 7428, pp 76–91. Springer, Berlin (2012)zbMATHGoogle Scholar
  4. 4.
    Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Tokareva, N., Vitkup, V.: Threshold implementations of small S-boxes. Cryptogr. Commun. 7(1), 3–33 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brinkmann, M., Leander, G.: On the classification of APN functions up to dimension five. DCC 49(1-3), 273–288 (2008)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Carlet, C.: Vectorial Boolean functions for cryptography, chapter of the volume Boolean Methods and Models. Cambridge University Press, Cambridge (2016)Google Scholar
  7. 7.
    Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-order masking schemes for S-boxes, FSE LNCS 7549, pp 366–384. Springer, Berlin (2012)zbMATHGoogle Scholar
  8. 8.
    Carlet, C., Prouff, E., Rivain, M., Roche, T.: Algebraic decomposition for probing security, CRYPTO LNCS 9215, pp 742–763. Springer, Berlin (2015)zbMATHGoogle Scholar
  9. 9.
    Carlitz, L.: Permutations in a finite field. Proc. Amer. Math. Soc. 4, 538 (1953)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Carlitz, L.: A note on permutation functions over a finite field. Proc. Amer. Math. Soc. 14, 101 (1963)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Coron, J.-S., Roy, A., Vivek, S.: Fast evaluation of polynomials over finite fields and application to side-channel Countermeasures, CHES LNCS 8731, pp 170–187. Springer, Berlin (2014)zbMATHGoogle Scholar
  12. 12.
    Kutzner, S., Ha Nguyen, P., Poschmann, A.: Enabling 3-share threshold implementations for any 4-bit S-box, IACR Cryptology ePrint Archive, 510 (2012)Google Scholar
  13. 13.
    Moradi, A.: Advances in side-channel security. Habilitation Thesis, Ruhr-Universität Bochum (2016)Google Scholar
  14. 14.
    Nyberg, K.: Differentially uniform mappings for cryptography, EUROCRYPT LNCS 765, pp 55–64. Springer, Berlin (1993)Google Scholar
  15. 15.
    Patarin, J.: Generic attacks on Feistel schemes, ASIACRYPT LNCS 2248, pp 222–238. Springer, Berlin (2001)zbMATHGoogle Scholar
  16. 16.
    Poschmann, A., Moradi, A., Khoo, K., Lim, C.-W., Wang, H., Ling, S.: Side-channel resistant crypto for less than 2,300 GE. J. Cryptol. 24(2), 322–345 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Roy, A., Vivek, S.: Analysis and improvement of the generic higher-order masking scheme of FSE 2012, CHES LNCS 8086, pp 417–434. Springer, Berlin (2013)Google Scholar
  18. 18.
    Zieve, M.: On a thorem of Carlitz. J. Group Theory 17, 667–669 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Svetla Nikova
    • 1
    Email author
  • Ventzislav Nikov
    • 2
  • Vincent Rijmen
    • 1
  1. 1.KU Leuven, imec-COSICLeuvenBelgium
  2. 2.NXP SemiconductorsLeuvenBelgium

Personalised recommendations