Correlation of radiological and immunochemical parameters with clinical outcome in patients with recurrent glioblastoma treated with Bevacizumab

  • R. A. Manneh Kopp
  • J. M. Sepúlveda-Sánchez
  • Y. Ruano
  • O. Toldos
  • A. Pérez Núñez
  • D. Cantero
  • A. Hilario
  • A. Ramos
  • G. de Velasco
  • P. Sánchez-Gómez
  • A. Hernández-LaínEmail author
Research Article



Some phase 2 trials had reported encouraging progression-free survival with Bevacizumab in monotherapy or combined with chemotherapy in glioblastoma. However, phase 3 trials showed a significant improvement in progression free survival without a benefit in overall survival. To date, there are no predictive biomarker of response for Bevacizumab in glioblastoma.


We used Immunochemical analysis on tumor samples and pretreatment and post-treatment perfusion-MRI to try to identify possible predictive angiogenesis-related biomarkers of response and survival in patients with glioblastoma treated with bevacizumab in the first recurrence. We analyzed histological parameters: vascular proliferation, mitotic number and Ki-67 index; molecular factors: MGMT promoter methylation, EGFR amplification and EGFR variant III; immunohistochemical: MET, Midkine, HIF1, VEGFA, VEGF-R2, CD44, Olig2, microvascular area and microvascular density; and radiological: rCBV.


In the statistical analysis, no significant correlation of any histological, molecular, microvascular or radiological parameters could be demonstrated with the response rate, PFS or OS with bevacizumab treatment.


Unfortunately, in this histopathological, molecular, immunohistochemical and neuroradiological study we did not find any predictive biomarker of response or survival benefit for Bevacizumab in glioblastoma.


Bevacizumab Glioblastoma Biomarkers Microvacular density Microvascular area 


Author contributions

Dr. RAMK project conception, project organization, project execution and writing first draft. Dr. JMS project conception, project organization, project execution, manuscript review and critique. Dr. YR project execution. Dr. OT project execution. Dr. AP: project conception, manuscript review and critique. DC project execution. Dr. AH: project conception, imaging, manuscript review. Dr. AR: project execution, imaging. Dr. VOR project execution. Dr. PS project conception, project organization, project execution, manuscript review and critique. Dr. AH project conception, project organization, project execution, manuscript review and critique.


This work was supported by a grant from the GEINO (Spanish Group for Research in Neurooncology) and a Grant number PI/13/01258 from ISCIII and co-funded with the European Regional Development Funds.

Compliance with ethical standards

Conflict of interest

Dr. Manneh Kopp reports no disclosures. Dr. Sepúlveda-Sánchez reports no disclosures. Dr. Ruano reports no disclosures. Dr. Toldos reports no disclosures. Dr. Perez-Nuñez reports no disclosures. Diana Cantero reports no disclosures. Dr. Hilario reports no disclosures. Dr. Ramos reports no disclosures. Dr. Velasco Oria de Rueda reports no disclosures. Dr. Sánchez-Gómez reports no disclosures. Dr. Hernandez-Lain reports no disclosures.

Supplementary material

12094_2019_2070_MOESM1_ESM.ppt (1.8 mb)
Supplementary figure 1. FISH Analysis of EGFR. FISH assay with locus-specific probes for EGFR paired with centromere probes for chromosomes 7 (CEP7) (Vysis, Downers Grove, IL, USA). Signals were scored in at least 200 intact nuclei. EGFR amplification was considered when more than 10% of tumor cells exhibited a EGFR:CEP7 ratio ≥ 2.0 Supplementary figure 2: OS and PFS for BVZ Kaplan Meier Illustrates the median OS (A) and median PFS (B) curves of the entire cohort for BVZ (PPT 1893 kb)


  1. 1.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.CrossRefPubMedGoogle Scholar
  2. 2.
    Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT. Angiogenesis in brain tumours. Nat Rev Neurosci. 2007;8:610–22.CrossRefPubMedGoogle Scholar
  3. 3.
    Sathornsumetee S, Cao Y, Marcello JE, Herndon JE 2nd, McLendon RE, Desjardins A, et al. Tumor angiogenic and hypoxic profiles predict radiographic response and survival in malignant astrocytoma patients treated with bevacizumab and irinotecan. J Clin Oncol. 2008;26:271–8.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Poulsen HS, Urup T, Michaelsen SR, Staberg M, Villingshøj M, Lassen U. The impact of bevacizumab treatment on survival and quality of life in newly diagnosed glioblastoma patients. Cancer Manag Res. 2014;6:373–87.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 2009;27:4733–40.CrossRefPubMedGoogle Scholar
  6. 6.
    Chinot O, Wick W, Mason W, et al. Phase III trial of bevacizumab added to standard radiotherapy and temozolomide for newly diagnosed glioblastoma: mature progression-free survival and preliminary overall survival results in AVAGlio. Neuro-Oncology. 2012;14(Suppl 6):vi101–vi105.Google Scholar
  7. 7.
    Gilbert MR, Dignam J, Won M, et al. RTOG 0825: Phase III double-blind placebo-controlled trial evaluating bevacizumab (Bev) in patients (Pts) with newly diagnosed glioblastoma (GBM). J Clin Oncol. 2013;31(Suppl):abstr 1.CrossRefGoogle Scholar
  8. 8.
    Wick W, Brandes AA, Gorlia T, et al. EORTC 26101 phase III trial exploring the combination of bevacizumab and lomustine in patients with first progression of a glioblastoma. J Clin Oncol. 2001;34(suppl):abstr.Google Scholar
  9. 9.
    Johnson DR, Leeper HE, Uhm JH. Glioblastoma survival in the United States improved after Food and Drug Administration approval of bevacizumab: a population-based analysis. Cancer. 2013;119:3489–95.CrossRefPubMedGoogle Scholar
  10. 10.
    Pakalniskis MG, Wells WA, Schwab MC, Froehlich HM, Jiang S, Li Z, et al. Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer? Radiology. 2011;259:365–74.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Uzzan B, Nicolas P, Cucherat M, Perret GY. Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis. Cancer Res. 2004;64:2941–55.CrossRefPubMedGoogle Scholar
  12. 12.
    Hilario A, Sepulveda JM, Hernandez-Lain A, Salvador E, Koren L, Manneh R, et al. Leakage decrease detected by dynamic susceptibility-weighted contrast-enhanced perfusion MRI predicts survival in recurrent glioblastoma treated with bevacizumab. Clin Transl Oncol. 2017;19:51–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Gerstner ER, Sorensen AG, Jain RK, Batchelor TT. Advances in neuroimaging techniques for the evaluation of tumor growth, vascular permeability, and angiogenesis in gliomas. Curr Opin Neurol. 2008;21:728–35.CrossRefPubMedGoogle Scholar
  14. 14.
    Pechman KR, Donohoe DL, Bedekar DP, Kurpad SN, Schmainda KM. Evaluation of combined bevacizumab plus irinotecan therapy in brain tumors using magnetic resonance imaging measures of relative cerebral blood volume. Magn Reson Med. 2012;68:1266–72.CrossRefPubMedGoogle Scholar
  15. 15.
    Hilario A, Ramos A, Perez-Nuñez A, Salvador E, Millan JM, Lagares A, et al. The added value of apparent diffusion coefficient to cerebral blood volume in the preoperative grading of diffuse gliomas. AJNR Am J Neuroradiol. 2012;33:701–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Sorensen AG, Emblem KE, Polaskova P, Jennings D, Kim H, Ancukiewicz M, et al. Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion. Cancer Res. 2012;72:402–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Hilario A, Sepulveda JM, Perez-Nuñez A, Salvador E, Millan JM, et al. A prognostic model based on preoperative MRI predicts overall survival in patients with diffuse gliomas. AJNR Am J Neuroradiol. 2014;35:1096–102.CrossRefPubMedGoogle Scholar
  18. 18.
    Palmisano WA, Divine KK, Saccomanno G, Gilliland FD, Baylin SB, Herman JG, Belinsky SA. Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res. 2000;1(60):5954–8.Google Scholar
  19. 19.
    Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000;343:1350–4.CrossRefPubMedGoogle Scholar
  20. 20.
    Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352:997–1003.CrossRefPubMedGoogle Scholar
  21. 21.
    Yoshimoto K, Dang J, Zhu S, Nathanson D, Huang T, Dumont R, et al. Development of a real-time RT-PCR assay for detecting EGFRvIII in glioblastoma samples. Clin Cancer Res. 2008;14:488–93.CrossRefPubMedGoogle Scholar
  22. 22.
    Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28:1963–72.CrossRefPubMedGoogle Scholar
  23. 23.
    Baumgarten P, Blank AE, Franz K, Hattingen E, Dunst M, Zeiner P, et al. Differential expression of vascular endothelial growth factor A, its receptors VEGFR-1, -2, and -3 and co-receptors neuropilin-1 and -2 does not predict bevacizumab response in human astrocytomas. Neuro Oncol. 2016;18:173–83.CrossRefPubMedGoogle Scholar
  24. 24.
    Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370:699–708.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Reardon DA, Desjardins A, Vredenburgh JJ, Gururangan S, Sampson JH, Sathornsumetee S, et al. Metronomic chemotherapy with daily, oral etoposide plus bevacizumab for recurrent malignant glioma: a phase II study. Br J Cancer. 2009;101:1986–94.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chen C, Huang R, MacLean A, Muzikansky A, Mukundan S, Wen PY, et al. Recurrent high-grade glioma treated with bevacizumab: prognostic value of MGMT methylation, EGFR status and pretreatment MRI in determining response and survival. J Neurooncol. 2013;115:267–76.CrossRefPubMedGoogle Scholar
  27. 27.
    Schmainda KM, Prah M, Connelly J, Rand SD, Hoffman RG, et al. Dynamic-susceptibility contrast agent MRI measures of relative cerebral blood volume predict response to bevacizumab in recurrent high-grade glioma. NeuroOncol. 2014;16:880–8.Google Scholar
  28. 28.
    Kickingereder P, Wiestler B, Burth S, Wick A, Nowosielski M, et al. Relative cerebral blood volume is a potential predictive imaging biomarker of bevacizumab efficacy in recurrent glioblastoma. Neuro Oncol. 2015;17:1139–47.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Harris RJ, Cloughesy TF, Hardy AJ, Liau LM, Pope WB, Nghiemphu PL, et al. MRI perfusion measurements calculated using advanced deconvolution techniques predict survival in recurrent glioblastoma treated with bevacizumab. J Neurooncol. 2015;122:497–505.CrossRefPubMedGoogle Scholar
  30. 30.
    Tamura R, Tanaka T, Miyake K, Tabei Y, Ohara K, Sampetrean O, et al. Histopathological investigation of glioblastomas resected under bevacizumab treatment. Oncotarget. 2016;7:52423–355.PubMedPubMedCentralGoogle Scholar
  31. 31.
    D'Alessandris QG, Martini M, Cenci T, Capo G, Ricci-Vitiani L, Larocca LM, et al. VEGF isoforms as outcome biomarker for anti-angiogenic therapy in recurrent glioblastoma. Neurology. 2015;84:1906–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Martini M, de Pascalis I, D'Alessandris QG, Fiorentino V, Pierconti F, Marei HE, et al. VEGF-121 plasma level as biomarker for response to anti-angiogenetic therapy in recurrent glioblastoma. BMC Cancer. 2018;18:553.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Molina D, Pérez-Beteta J, Martínez-González A, Sepúlveda JM, Peralta S, Gil-Gil MJ, et al. Geometrical measures obtained from pretreatment postcontrast T1 weighted MRIs predict survival benefits from bevacizumab in glioblastoma patients. PLoS ONE. 2016;11(8):e0161484.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Grossmann P, Narayan V, Chang K, Rahman R, Abrey L, Reardon DA, et al. Quantitative imaging biomarkers for risk stratification of patients with recurrent glioblastoma treated with bevacizumab. Neuro Oncol. 2017;19:1688–97.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Chang K, Zhang B, Guo X, Zong M, Rahman R, Sanchez D, et al. Multimodal imaging patterns predict survival in recurrent glioblastoma patients treated with bevacizumab. Neuro Oncol. 2016;18:1680–7.CrossRefPubMedGoogle Scholar

Copyright information

© Federación de Sociedades Españolas de Oncología (FESEO) 2019

Authors and Affiliations

  • R. A. Manneh Kopp
    • 1
  • J. M. Sepúlveda-Sánchez
    • 1
    • 6
  • Y. Ruano
    • 2
  • O. Toldos
    • 2
  • A. Pérez Núñez
    • 3
  • D. Cantero
    • 2
  • A. Hilario
    • 4
  • A. Ramos
    • 4
  • G. de Velasco
    • 1
  • P. Sánchez-Gómez
    • 5
  • A. Hernández-Laín
    • 2
    • 6
    Email author
  1. 1.Medical OncologyHospital Universitario 12 de OctubreMadridSpain
  2. 2.Department of Pathology (Neuropathology)Hospital Universitario 12 de OctubreMadridSpain
  3. 3.Department of NeurosurgeryHospital Universitario 12 de OctubreMadridSpain
  4. 4.Departments Radiology (A.H., A.R.)Hospital Universitario 12 de OctubreMadridSpain
  5. 5.Neuro-Oncology UnitHealth Institute Carlos III-UFIECMadridSpain
  6. 6.Instituto de Investigación Hospital 12 de Octubre (i+12)MadridSpain

Personalised recommendations