Advertisement

Laparoscopic cytoreductive surgery and HIPEC is effective regarding peritoneum tissue paclitaxel distribution

  • D. Padilla-ValverdeEmail author
  • P. Villarejo
  • J. Redondo
  • J. Oyarzabal
  • A. Estella
  • T. Palomino
  • E. Fernandez
  • S. Sanchez
  • S. Sánchez
  • P. Faba
  • V. Baladron
  • A. Alberca
  • O. Montenegro
  • J. Fernández
  • P. Marta
  • J. Martín
Research Article

Abstract

Background

In some patients with peritoneal carcinomatosis, we could perform the cytoreductive surgery and the HIPEC procedure by a complete laparoscopic approach to avoid morbidity. We consider that using laparoscopic approach for performing peritoneal carcinomatosis cytoreductive surgery and HIPEC with closed CO2 recirculation technique is possible and safe, with equal efficacy to conventional methods and hemodynamic complications.

Objective

Monitoring the effectiveness of the drug distribution in a laparoscopic ctoreductive and HIPEC surgery group with CO2 recirculation respect to a closed and open HIPEC group

Methods

Porcine model that included fifteen mini-pigs. Five pigs were operated with laparoscopic approach performing a pelvic and retroperitoneal lymphadenectomy. They later received a total laparoscopic closed HIPEC with CO2 recirculation (G1). Group 2 (G2): five pigs operated by an open cytoreductive surgery and closed HIPEC technique. Group 3 (G3): five animals in which an open cytoreductive surgery and an open HIPEC technique was performed. Blood and peritoneal determinations were realized after recirculation of the drug, at 60 min using chromatographic analysis.

Results

G1–G2: phrenic right peritoneum, p: 0.46. Phrenic left peritoneum, p: 0.46. Pelvic peritoneum, p: 0.17. Serum paclitaxel: p: 0.01. G1–G3: phrenic right peritoneum, p: 0.34. Phrenic left peritoneum, p: 0.34. Pelvic peritoneum, p: 0.17. Serum paclitaxel G1–G3, p: 0.02.

Conclusions

A total laparoscopic approach for ctoreductive surgery and closed HIPEC with CO2 recirculation may be safe and feasible. In our experimental model there was no significant difference in tissue drug distribution respect the conventional techniques and there was a less toxicity because the serum drug concentration was significantly lower with laparoscopic approach respect the other groups.

Keywords

Laparoscopy HIPEC Paclitaxel Hyperthermic intra-abdominal chemotherapy Peritoneum paclitaxel distribution 

Abbreviation

HIPEC

Hyperthermic intraperitoneal chemotherapy

Notes

Acknowledgments

To Foundation “Eugenio Rodriguez Pascual” for its Grant that allowed us to perform this project

Author contributions

DP-V, JR, PV, JM, have made the conception,design of the study, and acquisition-analysis of data. JO, AE, TP, EF, SS, SeS, PF, VB, AA, OM, JF, PM, have made the acquisition-analysis of data. DP-V and JM have made the final approval of the version that will be submitted.

Compliance with ethical standards

Conflict of interest

The authors, David Padilla-Valverde, Pedro Villarejo, Javier Redondo, Julen Oyarzabal, Ander Estella, Teodoro Palomino, Esther Fernandez, Susana Sanchez, Sergio Sánchez, Patricia Faba MD, Victor Baladron, Ana Alberca, Javier Fernández, Omar Montenegro, Pilar Marta, Jesus Martín, report no conflicts of interest.

References

  1. 1.
    Pelz JO, Vetterlein M, Grimmig T, Grimmiq T, Kerscher AG, Moll E, et al. Hyperthermic intraperitoneal chemotherapy in patients with peritoneal carcinomatosis: role of heat shock proteins and dissecting effects of hyperthermia. Ann Surg Oncol. 2013;20:1105–13.CrossRefGoogle Scholar
  2. 2.
    Dudar TE, Jain RK. Differential response of normal and tumor microcirculation to hyperthermia. Cancer Res. 1984;44:605–12.Google Scholar
  3. 3.
    Overgaard J. Effect of hyperthermia on malignant cells in vivo: a review and a hypothesis. Cancer. 1977;39:2637–46.CrossRefGoogle Scholar
  4. 4.
    Hildebrandt B, Wust P, Ahlers O, Dieing A, Screenivasa G, Kerner T, Felix R, Riess H. The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol. 2002;43:33–56.CrossRefGoogle Scholar
  5. 5.
    El-Kareh AW, Secomb TW. A theoretical model for intraperitoneal delivery of cisplatin and the effect of hyperthermia on drug penetration distance. Neoplasia. 2004;6:117–27.CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Konigsrainer I, Beckert S. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy: where are we? World J Gastroenterol. 2012;18:5317–20.CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Glehen O, Cotte E, Kusamura S, Deraco M, Baratti D, Passot G, et al. Hyperthermic intraperitoneal chemotherapy: nomenclature and modalities of perfusion. J Surg Oncol. 2008;15(98):242–6.CrossRefGoogle Scholar
  8. 8.
    Bijelic L, Jonson A, Sugarbaker PH. Systematic review of cytoreductive surgery and heated intraoperative intraperitoneal chemotherapy for treatment of peritoneal carcinomatosis in primary and recurrent ovarian cancer. Ann Oncol. 2007;18:1943–50.CrossRefGoogle Scholar
  9. 9.
    Stephens AD, Alderman R, Chang D, Edwards GD, Esquivel J, Sebbaq G, et al. Morbidity and mortality analysis of 200 treatments with cytoreductive surgery and hyperthermic intraoperative intraperitoneal chemotherapy using the coliseum technique. Ann Surg Oncol. 1999;6:790–6.CrossRefGoogle Scholar
  10. 10.
    Gesson-Paute A, Ferron G, Thomas F, de Lara EC, Chatelut E, Querleu D. Pharmacokinetics of oxaliplatin during open versus laparoscopically assisted heated intraoperative intraperitoneal chemotherapy (HIPEC): an experimental study. Ann Surg Oncol. 2008;15:339–44.CrossRefGoogle Scholar
  11. 11.
    Sugarbaker PH. Management of peritoneal-surface malignancy: the surgeon‘s role. Langenbecks Arch Surg. 1999;384:576–87.CrossRefGoogle Scholar
  12. 12.
    Simon L, Halilou MC, Gladieff L, Gadiou M, Herin F, Hennebelle I, et al. Hyperthermic intraoperative intraperitoneal chemotherapy (HIPEC): evaluation, prevention and policies to avoid occupational exposure for operating room personnel. Bull Cancer. 2009;96:971–7.Google Scholar
  13. 13.
    Sugarbaker PH. An Instrument to provide containment of intraoperative intraperitoneal chemotherapy with optimized distribution. J Surg Oncol. 2005;92:142–6.CrossRefGoogle Scholar
  14. 14.
    Glehen O, Osinsky D, Cotte E, Kwiatkowski F, Freyer G, Isaac S, et al. Intraperitoneal chemohyperthermia using a closed abdominal procedure and cytoreductive surgery for the treatment of peritoneal carcinomatosis: morbidity and mortality analysis of 216 consecutive procedures. Ann Surg Oncol. 2003;10:863–9.CrossRefGoogle Scholar
  15. 15.
    Kusamura S, Younan R, Baratti D, Costanzo P, Favaro M, Gavazzi C, et al. Cytoreductive surgery followed by intraperitoneal hyperthermic perfusion: analysis of morbidity and mortality in 209 peritoneal surface malignancies treated with closed abdomen technique. Cancer. 2006;106:1144–53.CrossRefGoogle Scholar
  16. 16.
    Ortega-Deballon P, Facy O, Jambet S, Magnin G, Cotte E, Beltramo JL, et al. Which method to deliver hyperthermic intraperitoneal chemotherapy with oxaliplatin? An experimental comparison of open and closed techniques. Ann Surg Oncol. 2010;17:1957–63.CrossRefGoogle Scholar
  17. 17.
    Raspe C, Piso P, Wiesenack C, Bucher M. Anesthetic management in patients undergoing hyperthermic chemotherapy. Curr Opin Anesthesiol. 2012;25:348–55.CrossRefGoogle Scholar
  18. 18.
    Eichhorn V, Goepfert MS, Eulenburg C, Malbrain ML, Reuter DA. Comparison of values in critically ill patients for global end-diastolic volume and extravascular lung water measured by transcardiopulmonary thermodilution: a meta-analysis of the literature. Med Intensiva. 2012;36:467–74.CrossRefGoogle Scholar
  19. 19.
    Huber W, Umgelter A, Reindl W, Franzen M, Schmidt C, von Delius S, et al. Volume assessment in patients with necrotizing pancreatitis: a comparison of intrathoracic blood volumen index, central venous pressure, and hematocrit, and their correlation to cardiac index and extravascular lung water. Crit Care Med. 2008;36:2348–54.CrossRefGoogle Scholar
  20. 20.
    Costa MG, Chiarandini P, Rocca D. Hemodynamics during liver transplantation. Transplant Proc. 2007;39:1871–3.CrossRefGoogle Scholar
  21. 21.
    Della Rocca G, Costa MG, Pompei G, Coccia C, Pitropaoli P. Continuous and intermittent cardiac output measurement: pulmonary artery catheter versus aortic transpulmonary technique. Br J Anaesth. 2002;88:350–6.CrossRefGoogle Scholar
  22. 22.
    Feltracco P, Biancofiore G, Ori C, Saner FH, Della Rocca G. Limits and pitfalls of haemodynamic monitoring systems in liver transplantation surgery. Minerva Anastesiol. 2012;78:1372–84.Google Scholar
  23. 23.
    Rothfield KP, Crowley K. Anesthesia considerations during cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Surg Oncol Clin N Am. 2012;21:533–41.CrossRefGoogle Scholar
  24. 24.
    Facchiano E, Risio D, Kianmanesh R, Msika S. Laparoscopic hyperthermic intraperitoneal chemotherapy: indications, aims and results. A systematic review of the literature. Ann Surg Oncol. 2012;19:2946–50.CrossRefGoogle Scholar
  25. 25.
    Sloothaak DAM, Gardenbroek TJ, Crezee J, Bemelman WA, Punt CJ, Buskens CJ, et al. Feasibility of adjuvant laparoscopic hyperthermic intraperitoneal chemotherapy in a short stay setting in patients with colorectal cancer at high risk of peritoneal carcinomatosis. EJSO. 2014;40:1453–8.CrossRefGoogle Scholar
  26. 26.
    Esquivel J, Averbach A, Chua TC. Laparoscopic cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in patients with limited peritoneal surfaces malignancies. Ann Surg. 2011;253:764–8.CrossRefGoogle Scholar
  27. 27.
    Lotti M, Capponi MG, Piazzalunga D, Poiasina E, Pisano M, Manfredi R, et al. Laparoscopic HIPEC: a bridge between open and closed techniques. J Minim Acces Surg. 2016;12:86–9.CrossRefGoogle Scholar
  28. 28.
    Sánchez García S, Padilla Valverde D, Villarejo Campos P, Martin-Fernandez J, Garcia-Rojo M, Rodriguez-Martinez M. Experimental development of an intra-abdominal chemohyperthermia model using a closed abdomen technique and a PRS-1.0 Combat® CO2 recirculation system. Surgery. 2014;155(4):719–25.CrossRefGoogle Scholar
  29. 29.
    Sánchez García S, Villarejo Campos P, Padilla Valverde D, Amo-Salas M, Martin-Fernandez J. Intraperitoneal chemotherapy hyperthermia (HIPEC) for peritoneal carcinomatosis of ovarian cancer origin by fluid and CO2 recirculation using the closed-abdomen technique (Combat PRS-1.0): a clinical pilot study. Int J Hyperth. 2016;32(5):488–98.CrossRefGoogle Scholar
  30. 30.
    Padilla-Valverde D, Sanchez-Garcia S, García-Santos E, Marcote-Ibañez C, Molina-Robles M, Martin-fernandez J, et al. Usefulness of thermographic analysis to control temperature homogeneity in the development and implementation of a closed recirculating CO2 chemohyperthermia model. Int J Hyperth. 2016;30:1–7.Google Scholar
  31. 31.
    García-Santos EP, Padilla-Valverde D, Villarejo-Campos P, Murillo-Lazaro C, Fernandez-grande E, Palomino-Muñoz T, et al. The utility of hyperthermic intra-abdominal chemotherapy with gemcitabine for the inhibition of tumor progression in an experimental model of pancreatic peritoneal carcinomatosis, in relation to their behavior with pancreatic cancer stem cells CD133+ CXCR10. Pancreatology. 2016;16(4):632–9.CrossRefGoogle Scholar
  32. 32.
    Pascual-Ramírez J, Sánchez-García S, González-Ruizdelaherrán F, Villarejo-Campos P, LopezdelaManzanara C, Haya-Palazuelo J, et al. Security and efficiency of a closed-system, turbulent-flow circuit for hyperthermic intraperitoneal chemotherapy after cytoreductive ovarian surgery: perioperative outputs. Arch Gynecol Obstet. 2014;290:121–9.CrossRefGoogle Scholar
  33. 33.
    Sanchez-García S, Padilla-Valverde D, Villarejo-Campos P, Garcia-santos E, Martin-Fernandez J. Hyperthermic chemotherapy intra-abdominal laparoscopic approach: development of a laparoscopic model using CO2 recirculation system and clinical translation in peritoneal carcinomatosis. Int J Hyperth. 2017;33:684–9.CrossRefGoogle Scholar
  34. 34.
    Facy O, Al Samman S, Magnin G, Ghiringhelli F, Ladoire S, Chauffert B, et al. High pressure enhances the effect of hyperthermia in intraperitoneal chemotherapy with oxaliplatin: an experimental study. Ann Surg. 2012;256:1084–8.CrossRefGoogle Scholar
  35. 35.
    Klaver YL, Hendriks T, Lomme RM, Rutten HJ, Bleichrodt RP, de Hingh IH. Hyperthermia and intraperitoneal chemotherapy for the treatment of peritoneal carcinomatosis: an experimental study. Ann Surg. 2011;254:125–30.CrossRefGoogle Scholar
  36. 36.
    Piche N, Leblond FA, Sidéris L, Pichette V, Drolet P, Fotier LP, et al. Rationale for heating oxaliplatin for the intraperitoneal treatment of peritoneal carcinomatosis. A study of the effect of heat on intraperitoneal oxaliplatin using a murine model. Ann Surg. 2011;254:138–44.CrossRefGoogle Scholar
  37. 37.
    Esquis P, Consolo D, Margin D, Pointaire P, Moretto P, Ynsa MD, et al. High intrabdominal pressure enhances the penetration and antitumor effect of intraperitoneal cisplatin on experimental peritoneal carcinomatosis. Ann Surg. 2006;244:106–12.CrossRefPubMedCentralGoogle Scholar

Copyright information

© Federación de Sociedades Españolas de Oncología (FESEO) 2019

Authors and Affiliations

  • D. Padilla-Valverde
    • 1
    Email author
  • P. Villarejo
    • 1
  • J. Redondo
    • 2
  • J. Oyarzabal
    • 3
  • A. Estella
    • 3
  • T. Palomino
    • 4
  • E. Fernandez
    • 4
  • S. Sanchez
    • 1
  • S. Sánchez
    • 2
  • P. Faba
    • 2
  • V. Baladron
    • 2
  • A. Alberca
    • 1
  • O. Montenegro
    • 2
  • J. Fernández
    • 1
  • P. Marta
    • 1
  • J. Martín
    • 1
  1. 1.Department of SurgeryUniversity General HospitalCiudad RealSpain
  2. 2.Department of AnesthesiologyUniversity General HospitalCiudad RealSpain
  3. 3.Center for Applied Medical Research, CIMAUniversity of NavarraPamplonaSpain
  4. 4.Laboratory DepartmentUniversity General HospitalCiudad RealSpain

Personalised recommendations