Clinical and Translational Oncology

, Volume 21, Issue 3, pp 289–297 | Cite as

Baseline 18F-Fluorocholine PET/CT and bone scan in the outcome prediction of patients treated with radium 223 dichloride

  • A. M. García VicenteEmail author
  • B. González García
  • M. Amo-Salas
  • I. García Carbonero
  • J. Cassinello Espinosa
  • J. L. Gómez-Aldaraví Gutierrez
  • L. Suarez Hinojosa
  • Á. Soriano Castrejón
Research Article



To establish the utility of baseline 18F-Fluorocholine (FCH) PET/CT and bone scintigraphy (BS) in the outcome prediction of patients with castration-resistant prostate cancer and bone metastases (CRPC-BM) treated with 223Ra.


Prospective, multicenter and non-randomized study (ChoPET-Rad study). FCH PET/CT and BS were performed before the initiation of 223Ra (basal FCH PET/CT and BS). Bone disease was classified attending the number of lesions in baseline BS and PET/CT. FCH PET/CT was semiquantitatively evaluated. Gleason score, baseline levels of prostate-specific antigen (PSA), alkaline phosphatase and lactate dehydrogenase were determined. Progression-free survival (PFS) and overall survival (OS) since the onset of 223Ra treatment was calculated. PFS was defined by PSA rising. Relations between clinical and imaging variables with PFS and OS were evaluated by Pearson, Mann–Whitney tests and Kapplan–Meier analysis. Univariate and multivariate Cox regression analysis was performed.


Forty patients were evaluated. The median PFS and OS were of 3.0 ± 2.3 and 23.0 ± 4.2 months, respectively. 33 patients progressed and 13 died during the follow-up. The extension of the bone disease by FCH PET/CT (p = 0.011, χ2 = 10.63), BS (p = 0.044, χ2 = 8.04), SUVmax (p = 0.012) and average SUVmax (p = 0.014) were related to OS. No significant association was found for the PFS. ROC analysis revealed significant association of SUVmax, average SUVmax and basal PSA with OS. Only therapeutic failure was associated with OS in the multivariate analysis (HR = 3.6, p = 0.04).


FCH PET/CT and BS had prognostic aim in the prediction of OS. None clinical or imaging variable was able to predict the PFS, probably due to the high rate of progressive disease.


18F-Fluorocholine PET/CT Metastatic prostate cancer Bone scintigraphy 223Radium treatment Prognosis 




Compliance with ethical standards

Conflict of interest

Authors declare that they have no conflict of interest.

Animal and human participant rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Sridhar SS, Freedland SJ, GleaveME Higano C, Mulders P, Parker C, et al. Castration-resistant prostate cancer: from new pathophysiology to new treatment. Eur Urol. 2014;65:289–99.CrossRefGoogle Scholar
  2. 2.
    Treglia G, Ceriani L, Sadeghi R, Giovacchini G, Giovanella L. Relationship between prostate-specific antigen kinetics and detection rate of radiolabelled choline PET/CT in restaging prostate cancer patients: a meta-analysis. Clin Chem Lab Med. 2014;52:725–33.CrossRefGoogle Scholar
  3. 3.
    Evangelista L, Zattoni F, Guttilla A, Saladini G, Zattoni F, Colletti PM, et al. Choline PET or PET/CT and biochemical relapse of prostate cancer: a systematic review and meta-analysis. Clin Nucl Med. 2013;38:305–14.CrossRefGoogle Scholar
  4. 4.
    Giovacchini G, Picchio M, Garcia-Parra R, Briganti A, Abdollah F, Gianolli L, et al. 11C-choline PET/CT predicts prostate cancer-specific survival in patients with biochemical failure during androgen-deprivation therapy. J Nucl Med. 2014;55:233–41.CrossRefGoogle Scholar
  5. 5.
    Fuccio C, Castellucci P, Schiavina R, Guidalotti PL, Gavaruzzi G, Montini GC, et al. Role of 11C-choline PET/CT in the re-staging of prostate cancer patients with biochemical relapse and negative results at bone scintigraphy. Eur J Radiol. 2012;81:e893–6.CrossRefGoogle Scholar
  6. 6.
    Beheshti M, Vali R, Waldenberger P, Fitz F, Nader M, Loidl W, et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging. 2008;35:1766–74.CrossRefGoogle Scholar
  7. 7.
    Fuccio C, Castellucci P, Schiavina R, Santi I, Allegri V, Pettinato V, et al. Role of 11C-choline PET/CT in the restaging of prostate cancer patients showing a single lesion on bone scintigraphy. Ann Nucl Med. 2010;24:485–92.CrossRefGoogle Scholar
  8. 8.
    Rodado Marina S, Coronado Poggio M, Garcia Vicente AM, García-Garzón JR, Alonso-Farto JC, de la Jara AC, et al. Clinical utility of 18F-fluorocholine PET-CT in biochemical relapse of prostate cancer after radical treatment: results of a multicentre study. BJU Int. 2015;115:874–83.CrossRefGoogle Scholar
  9. 9.
    Parker C, Gillessen S, Heidenreich A, Horwich A. Cancer of the prostate: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Suppl 5):69–77.CrossRefGoogle Scholar
  10. 10.
    Mohler JL, Armstrong AJ, Bahnson RR, D’Amico AV, Davis BJ, Eastham JA, et al. NCCN clinical practice guidelines in prostate cancer. J Natl Compr Cancer Netw. 2016;14:19–30.CrossRefGoogle Scholar
  11. 11.
    Heidenreich A, Aus G, Bolla M, Joniau S, Matveev VB, Schmid HP, et al. EAU guidelines on prostate cancer. Eur Urol. 2008;53:68–80.CrossRefGoogle Scholar
  12. 12.
    Cookson MS, Roth BJ, Dahm P, Engstrom C, Freedland SJ, Hussain M, et al. Castration-resistant prostate cancer: AUA guideline. J Urol. 2013;190:429–38.CrossRefGoogle Scholar
  13. 13.
    Scher HI, Halabi S, Tannock I, Morris M, Sternberg CN, Carducci MA, et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol. 2008;26:1148–59.CrossRefGoogle Scholar
  14. 14.
    Crawford ED, Stone NN, Yu EY, Koo PJ, Freedland SJ, Slovin SF, et al. Challenges and recommendations for early identification of metastatic disease in prostate cancer. Urology. 2014;83:664–9.CrossRefGoogle Scholar
  15. 15.
    Gillessen S, Omlin A, Attard G, de Bono JS, Efstathiou E, Fizazi K, et al. Management of patients with advanced prostate cancer: recommendations of the St. Gallen Advanced Prostate Cancer Consensus Conference (APCCC) 2015. Ann Oncol. 2015;26:1589–604.CrossRefGoogle Scholar
  16. 16.
    Basch E, Loblaw DA, Oliver TK, Carducci M, Chen RC, Frame JN, et al. Systemic therapy in men with metastatic castration-resistant prostate cancer: American Society of Clinical Oncology and Cancer Care Ontario clinical practice guideline. J Clin Oncol. 2014;32:3436–48.CrossRefGoogle Scholar
  17. 17.
    Cornford P, Bellmunt J, Bolla M, Briers E, De Santis M, Gross T, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: Treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur Urol. 2017;71:630–42.CrossRefGoogle Scholar
  18. 18.
    Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fossa SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369:213–23.CrossRefGoogle Scholar
  19. 19.
    Gillessen S, Attard G, Beer TM, Beltran H, Bossi A, Bristow R, et al. Management of patients with advanced prostate cancer: the report of the advanced prostate cancer consensus conference APCCC 2017. Eur Urol. 2018;73:178–211.CrossRefGoogle Scholar
  20. 20.
    Mottet N, Bellmunt J, Briers E, Van den Bergh RCN, Bolla M, Van Casteren NJ, et al. Guidelines on prostate cancer. European Association of Urology. 2015.…/07-Prostate-Cancer_LR.pdf. Accessed Mar 2015.
  21. 21.
    Mohler JL, Kantoff PW, Armstrong AJ, Bahnson RR, Cohen M, D’Amico AV, et al. Prostate cancer, version 2.2014. J Natl Compr Cancer Netw. 2014;12:686–718.CrossRefGoogle Scholar
  22. 22.
    Fitzpatrick JM, Bellmunt J, Fizazi K, Heidenreich A, Sternberg CN, Tombal B, et al. Optimal management of metastatic castration resistant prostate cancer: highlights from a European Expert Consensus Panel. Eur J Cancer. 2014;50:1617–27.CrossRefGoogle Scholar
  23. 23.
    Shen G, Deng H, Hu S, Jia Z. Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis. Skelet Radiol. 2014;43:1503–13.CrossRefGoogle Scholar
  24. 24.
    Beheshti M, Vali R, Waldenberger P, Fitz F, Nader M, Hammer J, et al. The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT. Mol Imaging Biol. 2010;12:98–107.CrossRefGoogle Scholar
  25. 25.
    Murray I, Chittenden SJ, Denis-Bacelar AM, Hindorf C, Parker CC, Chua S, et al. The potential of Ra and F-fluoride imaging to predict bone lesion response to treatment with 223Ra-dichloride in castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2017. Scholar
  26. 26.
    Etchebehere EC, Araujo JC, Fox PS, Swanston NM, Macapinlac HA, Rohren EM. Prognostic factors in patients treated with 223Ra: the role of skeletal tumor burden on baseline 18F-Fluoride PET/CT in predicting overall survival. J Nucl Med. 2015;56:1177–84.CrossRefGoogle Scholar
  27. 27.
    Ceci F, Castellucci P, Graziani T, Schiavina R, Renzi R, Borghesi M, et al. 11C-Choline PET/CT in castration-resistant prostate cancer patients treated with docetaxel. Eur J Nucl Med Mol Imaging. 2016;43:84–91.CrossRefGoogle Scholar
  28. 28.
    Song YP, Ellis T, Walshaw R, Mbanu P, Parikh O, Logue J, et al. Comparing clinical outcomes for Radium-223: do older patients do worse? Int J Radiat Oncol Biol Phys. 2017;98:955–7.CrossRefGoogle Scholar
  29. 29.
    Mizokami A, Kadono Y, Kitagawa Y, Izumi K, Konaka H. Therapies for castration-resistant prostate cancer in a new era: the indication of vintage hormonal therapy, chemotherapy and the new medicines. Int J Urol. 2017;24:566–72.CrossRefGoogle Scholar
  30. 30.
    Nakajima K, Nakajima Y, Horikoshi H, Ueno M, Wakabayashi H, Shiga T, et al. Enhanced diagnostic accuracy for quantitative bone scan using an artificial neural network system: a Japanese multi-center database project. Eur J Nucl Med Mol Imaging Res. 2013;3:83.Google Scholar
  31. 31.
    Izumi K, Lin WJ, Miyamoto H, Huang CK, Maolake A, Kitagawa Y, et al. Outcomes and predictive factors of prostate cancer patients with extremely high prostate-specific antigen level. J Cancer Res Clin Oncol. 2014;140:1413–9.CrossRefGoogle Scholar

Copyright information

© Federación de Sociedades Españolas de Oncología (FESEO) 2018

Authors and Affiliations

  • A. M. García Vicente
    • 1
    Email author
  • B. González García
    • 1
  • M. Amo-Salas
    • 2
  • I. García Carbonero
    • 3
  • J. Cassinello Espinosa
    • 4
  • J. L. Gómez-Aldaraví Gutierrez
    • 5
  • L. Suarez Hinojosa
    • 6
  • Á. Soriano Castrejón
    • 1
  1. 1.Nuclear Medicine DepartmentUniversity General HospitalCiudad RealSpain
  2. 2.Departamento de MatemáticasUniversidad de Castilla La ManchaCiudad RealSpain
  3. 3.S. Oncología MédicaComplejo Hospitalario de ToledoToledoSpain
  4. 4.S. Oncología MédicaHospital Universitario de GuadalajaraGuadalajaraSpain
  5. 5.S. Oncología MédicaHospital Universitario de AlbaceteAlbaceteSpain
  6. 6.S. Oncología MédicaH. ManzanaresCiudad RealSpain

Personalised recommendations