Advertisement

Clinical and Translational Oncology

, Volume 21, Issue 2, pp 152–159 | Cite as

Tumor-derived exosomes in cancer metastasis risk diagnosis and metastasis therapy

  • S. Jiang
  • C. Hu
  • P. Liu
  • M. LuEmail author
Review Article
  • 278 Downloads

Abstract

Exosomes are endosomes secreted from the membrane by exocytosis as multivesicular bodies and are generally defined by their spherical, unilamellar morphology, size and the expression of specific biomarkers used for diagnosis or therapy targets. Recent research has reported a higher relationship between exosome enrichment and tumor disease development. In this review, we discuss exosome intercellular communication and functions in the pathology of disease, especially on the cancer metastasis related with exosome. We introduce how exosomes from cancer and stem cancer cells target different organs through transporting molecular proteins of exosome inclusions to improve or inhibit cancer metastasis as well as highlight exosome therapy strategies for tumor pathology involving microRNAs.

Keywords

Exosomes miRNA Cancer Metastasis 

Notes

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent is not applicable to this article.

References

  1. 1.
    Fais S, Logozzi M, Lugini L, Federici C, Azzarito T, Zarovni N, et al. Exosomes: the ideal nanovectors for biodelivery. Biol Chem. 2013;394(1):1.  https://doi.org/10.1515/hsz-2012-0236.Google Scholar
  2. 2.
    Peterson MF, Otoc N, Sethi JK, Gupta A, Antes TJ. Integrated systems for exosome investigation. Methods. 2015;87:31–45.  https://doi.org/10.1016/j.ymeth.2015.04.015.Google Scholar
  3. 3.
    Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 2009;19(2):43–51.  https://doi.org/10.1016/j.tcb.2008.11.003.Google Scholar
  4. 4.
    Pan B, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 1983;33(3):967–78.  https://doi.org/10.1016/0092-8674(83)90040-5.Google Scholar
  5. 5.
    Johnstone RM, Bianchini A, Teng K. Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions. Blood. 1989;74(5):1844–51.Google Scholar
  6. 6.
    Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev. 2013;32(3–4):623–42.  https://doi.org/10.1007/s10555-013-9441-9.Google Scholar
  7. 7.
    Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer. N Engl J Med. 2009;360(8):790–800.  https://doi.org/10.1056/NEJMra0801289.Google Scholar
  8. 8.
    Friel AM, Corcoran C, Crown J, O’Driscoll L. Relevance of circulating tumor cells, extracellular nucleic acids, and exosomes in breast cancer. Breast Cancer Res Treat. 2010;123(3):613–25.  https://doi.org/10.1007/s10549-010-0980-2.Google Scholar
  9. 9.
    Lee C, Carney RP, Hazari S, Smith ZJ, Knudson A, Robertson CS, et al. 3D plasmonic nanobowl platform for the study of exosomes in solution. Nanoscale. 2015;7(2):929–9297.  https://doi.org/10.1039/c5nr01333j.Google Scholar
  10. 10.
    Rana S, Malinowska K, Zoller M. Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia. 2013;15(3):281–95.Google Scholar
  11. 11.
    Yang M, Chen J, Su F, Yu B, Su F, Lin L, et al. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer. 2011;10:117.  https://doi.org/10.1186/1476-4598-10-117.Google Scholar
  12. 12.
    Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH. Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer. 2009;10(1):42–6.  https://doi.org/10.3816/CLC.2009.n.006.Google Scholar
  13. 13.
    Sandfeld-Paulsen B, Jakobsen KR, Baek R, Folkersen BH, Rasmussen TR, Meldgaard P, et al. Exosomal proteins as diagnostic biomarkers in lung cancer. J Thorac Oncol. 2016;11(10):1701–10.  https://doi.org/10.1016/j.jtho.2016.05.034.Google Scholar
  14. 14.
    Nilsson J, Skog J, Nordstrand A, Baranov V, Mincheva-Nilsson L, Breakefield XO, et al. Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer. 2009;100(10):1603–7.  https://doi.org/10.1038/sj.bjc.6605058.Google Scholar
  15. 15.
    Wang L, Skotland T, Berge V, Sandvig K, Llorente A. Exosomal proteins as prostate cancer biomarkers in urine: From mass spectrometry discovery to immunoassay-based validation. Eur J Pharm Sci. 2017;98:80–5.  https://doi.org/10.1016/j.ejps.2016.09.023.Google Scholar
  16. 16.
    Zhu Z, Fang Z, Hu X, Zhou S. MicroRNAs and mesenchymal stem cells: hope for pulmonary hypertension. Rev Bras Cir Cardiovasc. 2015;30(3):380–5.  https://doi.org/10.5935/1678-9741.20150033.Google Scholar
  17. 17.
    Hannafon BN, Trigoso YD, Calloway CL, Zhao YD, Lum DH, Welm AL, et al. Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res. 2016;18(1):90.  https://doi.org/10.1186/s13058-016-0753-x.Google Scholar
  18. 18.
    Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110(1):13–21.  https://doi.org/10.1016/j.ygyno.2008.04.033.Google Scholar
  19. 19.
    Lin S, Chang C, Wu H, Lin C, Chang K, Yang C, et al. Proteome profiling of urinary exosomes identifies alpha 1-antitrypsin and H2B1K as diagnostic and prognostic biomarkers for urothelial carcinoma. Sci Rep. 2016;6:34446.  https://doi.org/10.1038/srep34446.Google Scholar
  20. 20.
    Yin W, Ouyang S, Luo Z, Zeng Q, Hu B, Xu L, et al. Immature exosomes derived from microRNA-146a overexpressing dendritic cells act as antigen-specific therapy for myasthenia gravis. Inflammation. 2017;40(4):1460–73.  https://doi.org/10.1007/s10753-017-0589-2.Google Scholar
  21. 21.
    Matsumoto Y, Kano M, Akutsu Y, Hanari N, Hoshino I, Murakami K, et al. Quantification of plasma exosome is a potential prognostic marker for esophageal squamous cell carcinoma. Oncol Rep. 2016;36(5):2535–43.  https://doi.org/10.3892/or.2016.5066.Google Scholar
  22. 22.
    Yu X, Harris SL, Levine AJ. The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res. 2006;66(9):4795–801.  https://doi.org/10.1158/0008-5472.CAN-05-4579.Google Scholar
  23. 23.
    Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012;14(7):677–85.  https://doi.org/10.1038/ncb2502.Google Scholar
  24. 24.
    Liga A, Vliegenthart AD, Oosthuyzen W, Dear JW, Kersaudy-Kerhoas M. Exosome isolation: a microfluidic road-map. Lab Chip. 2015;15(11):2388–94.  https://doi.org/10.1039/c5lc00240k.Google Scholar
  25. 25.
    Zhang H, Grizzle WE. Exosomes: a novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions. Am J Pathol. 2014;184(1):28–41.  https://doi.org/10.1016/j.ajpath.2013.09.027.Google Scholar
  26. 26.
    Zhao W, Zheng XL, Zhao SP. Exosome and its roles in cardiovascular diseases. Heart Fail Rev. 2015;20(3):337–48.  https://doi.org/10.1007/s10741-014-9469-0.Google Scholar
  27. 27.
    Lu K, Li HY, Yang K, Wu JL, Cai XW, Zhou Y, et al. Exosomes as potential alternatives to stem cell therapy for intervertebral disc degeneration: in vitro study on exosomes in interaction of nucleus pulposus cells and bone marrow mesenchymal stem cells. Stem Cell Res Ther. 2017;8(1):108.  https://doi.org/10.1186/s13287-017-0563-9.Google Scholar
  28. 28.
    Ristorcelli E, Beraud E, Verrando P, Villard C, Lafitte D, Sbarra V, et al. Human tumor nanoparticles induce apoptosis of pancreatic cancer cells. FASEB J. 2008;22(9):3358–69.  https://doi.org/10.1096/fj.07-102855.Google Scholar
  29. 29.
    Alexander M, Ramstead AG, Bauer KM, Lee S, Runtsch MC, Wallace J, et al. Rab27-dependent exosome production inhibits chronic inflammation and enables acute responses to inflammatory stimuli. J Immunol. 2017;199(10):3559–70.  https://doi.org/10.4049/jimmunol.1700904.Google Scholar
  30. 30.
    Chen Y, Zeng C, Zhan Y, Wang H, Jiang X, Li W. Aberrant low expression of p85[alpha] in stromal fibroblasts promotes breast cancer cell metastasis through exosome-mediated paracrine Wnt10b. Oncogene. 2017;36(33):4692.  https://doi.org/10.1038/onc.2017.100.Google Scholar
  31. 31.
    Raimondi L, De Luca A, Amodio N, Manno M, Raccosta S, Taverna S, et al. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation. Oncotarget. 2015;6(15):13772–89.  https://doi.org/10.18632/oncotarget.3830.Google Scholar
  32. 32.
    Tudek A, Candelli T, Libri D. Non-coding transcription by RNA polymerase II in yeast: hasard or nécessité? Biochimie. 2015;117:28–36.  https://doi.org/10.1016/j.biochi.2015.04.020.Google Scholar
  33. 33.
    Melo SA, Sugimoto H, O’Connell JT, Kato N, Villanueva A, Vidal A, et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell. 2014;26(5):707–21.  https://doi.org/10.1016/j.ccell.2014.09.005.Google Scholar
  34. 34.
    Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol. 2015;17(6):816–26.  https://doi.org/10.1038/ncb3169.Google Scholar
  35. 35.
    Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18(6):883–91.  https://doi.org/10.1038/nm.2753.Google Scholar
  36. 36.
    Vulpis E, Cecere F, Molfetta R, Soriani A, Fionda C, Peruzzi G, et al. Genotoxic stress modulates the release of exosomes from multiple myeloma cells capable of activating NK cell cytokine production: role of HSP70/TLR2/NF-kB axis. Oncoimmunology. 2017;6(3):e1279372.  https://doi.org/10.1080/2162402X.2017.1279372.Google Scholar
  37. 37.
    Menay F, Herschlik L, De Toro J, Cocozza F, Tsacalian R, Gravisaco MJ, et al. Exosomes isolated from ascites of T-cell lymphoma-bearing mice expressing surface CD24 and HSP-90 induce a tumor-specific immune response. Front Immunol. 2017;8:286.  https://doi.org/10.3389/fimmu.2017.00286.Google Scholar
  38. 38.
    Deng M, Xiao H, Peng H, Yuan H, Xu Y, Zhang G, et al. Preservation of neuronal functions by exosomes derived from different human neural cell types under ischemic conditions. Eur J Neurosci. 2018;47(2):150–7.  https://doi.org/10.1111/ejn.13784.Google Scholar
  39. 39.
    Li J, Fu L, Liu L, Xie F, Dai R. Glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide alters bone marrow exosome-mediated miRNA signal pathways in ovariectomized rats with type 2 diabetes. Med Sci Monit. 2017;23:5410–9.  https://doi.org/10.12659/MSM.906603.Google Scholar
  40. 40.
    Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 2015;523(7559):177–82.  https://doi.org/10.1038/nature14581.Google Scholar
  41. 41.
    Corcoran C, Friel AM, Duffy MJ, Crown J, O’Driscoll L. Intracellular and extracellular microRNAs in breast cancer. Clin Chem. 2011;57(1):18–32.  https://doi.org/10.1373/clinchem.2010.150730.Google Scholar
  42. 42.
    Li J, Sherman-Baust CA, Tsai-Turton M, Bristow RE, Roden RB, Morin PJ. Claudin-containing exosomes in the peripheral circulation of women with ovarian cancer. BMC Cancer. 2009;9:244.  https://doi.org/10.1186/1471-2407-9-244.Google Scholar
  43. 43.
    Logozzi M, De Milito A, Lugini L, Borghi M, Calabro L, Spada M, et al. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS One. 2009;4(4):e5219.  https://doi.org/10.1371/journal.pone.0005219.Google Scholar
  44. 44.
    Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470–6.  https://doi.org/10.1038/ncb1800.Google Scholar
  45. 45.
    Bergmann C, Strauss L, Wieckowski E, Czystowska M, Albers A, Wang Y, et al. Tumor-derived microvesicles in sera of patients with head and neck cancer and their role in tumor progression. Head Neck. 2009;31(3):371–80.  https://doi.org/10.1002/hed.20968.Google Scholar
  46. 46.
    Lazar I, Clement E, Ducoux-Petit M, Denat L, Soldan V, Dauvillier S, et al. Proteome characterization of melanoma exosomes reveals a specific signature for metastatic cell lines. Pigment Cell Melanoma Res. 2015;28(4):464–75.  https://doi.org/10.1111/pcmr.12380.Google Scholar
  47. 47.
    Long JD, Sullivan TB, Humphrey J, Logvinenko T, Summerhayes KA, Kozinn S, et al. A non-invasive miRNA based assay to detect bladder cancer in cell-free urine. Am J Transl Res. 2015;7(11):2500–9.Google Scholar
  48. 48.
    Andre F, Chaput N, Schartz NE, Flament C, Aubert N, Bernard J, et al. Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J Immunol. 2004;172(4):2126–36.Google Scholar
  49. 49.
    Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL, et al. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci USA. 2010;107(14):6328–33.  https://doi.org/10.1073/pnas.0914843107.Google Scholar
  50. 50.
    Gross JC, Chaudhary V, Bartscherer K, Boutros M. Active Wnt proteins are secreted on exosomes. Nat Cell Biol. 2012;14(10):1036–45.  https://doi.org/10.1038/ncb2574.Google Scholar
  51. 51.
    Mathivanan S, Ji H, Simpson RJ. Exosomes: Extracellular organelles important in intercellular communication. J Proteom. 2010;73(10):1907–20.  https://doi.org/10.1016/j.jprot.2010.06.006.Google Scholar
  52. 52.
    Andre F, Schartz NE, Movassagh M, Flament C, Pautier P, Morice P, et al. Malignant effusions and immunogenic tumour-derived exosomes. Lancet. 2002;360(9329):295–305.  https://doi.org/10.1016/S0140-6736(02)09552-1.Google Scholar
  53. 53.
    Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic MM, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527(7578):329–35.  https://doi.org/10.1038/nature15756.Google Scholar
  54. 54.
    Rohner NA, Thomas SN. Melanoma growth effects on molecular clearance from tumors and biodistribution into systemic tissues versus draining lymph nodes. J Control Release. 2016;223:99–108.  https://doi.org/10.1016/j.jconrel.2015.12.027.Google Scholar
  55. 55.
    Fang T, Lv H, Lv G, Li T, Wang C, Han Q, et al. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nature. 2018;9(1):1–13.  https://doi.org/10.1038/s41467-017-02583-0.Google Scholar
  56. 56.
    Peinado H, Alec KM, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, et al. Corrigendum: melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2016;22(12):1502.  https://doi.org/10.1038/nm1216-1502b.Google Scholar
  57. 57.
    Arvelo F, Sojo F, Cotte C. Cancer and the metastatic substrate. Ecancermedicalscience. 2016;10:701.  https://doi.org/10.3332/ecancer.2016.701.Google Scholar
  58. 58.
    Goto T, Fujiya M, Konishi H, Sasajima J, Fujibayashi S, Hayashi A, et al. An elevated expression of serum exosomal microRNA-191, -21, -451a of pancreatic neoplasm is considered to be efficient diagnostic marker. BMC Cancer. 2018;18(1):116.  https://doi.org/10.1186/s12885-018-4006-5.Google Scholar
  59. 59.
    Fu F, Jiang W, Zhou L, Chen Z. Circulating exosomal miR-17-5p and miR-92a-3p predict pathologic stage and grade of colorectal cancer. Transl Oncol. 2018;11(2):221–32.  https://doi.org/10.1016/j.tranon.2017.12.012.Google Scholar
  60. 60.
    Tokuhisa M, Ichikawa Y, Kosaka N, Ochiya T, Yashiro M, Hirakawa K, et al. Exosomal miRNAs from peritoneum lavage fluid as potential prognostic biomarkers of peritoneal metastasis in gastric cancer. PLoS One. 2015;10(7):e0130472.  https://doi.org/10.1371/journal.pone.0130472.Google Scholar
  61. 61.
    Tutar Y. miRNA and cancer; computational and experimental approaches. Curr Pharm Biotechnol. 2014;15(5):429.Google Scholar
  62. 62.
    Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D, et al. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol Semin Orig Investig. 2010;28(6):655–61.  https://doi.org/10.1016/j.urolonc.2009.01.027.Google Scholar
  63. 63.
    Chiam K, Wang T, Watson DI, Mayne GC, Irvine TS, Bright T, et al. Circulating serum exosomal miRNAs as potential biomarkers for esophageal adenocarcinoma. J Gastrointest Surg. 2015;19(7):1208–15.  https://doi.org/10.1007/s11605-015-2829-9.Google Scholar
  64. 64.
    Ogata-Kawata H, Izumiya M, Kurioka D, Honma Y, Yamada Y, Furuta K, et al. Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One. 2014;9(4):e92921.  https://doi.org/10.1371/journal.pone.0092921.Google Scholar
  65. 65.
    O’Loughlin AJ, Woffindale CA, Wood MJ. Exosomes and the emerging field of exosome-based gene therapy. Curr Gene Ther. 2012;12(4):262–74.Google Scholar
  66. 66.
    Kosaka N, Takeshita F, Yoshioka Y, Hagiwara K, Katsuda T, Ono M, et al. Exosomal tumor-suppressive microRNAs as novel cancer therapy: “exocure” is another choice for cancer treatment. Adv Drug Deliv Rev. 2013;65(3):376–82.  https://doi.org/10.1016/j.addr.2012.07.011.Google Scholar
  67. 67.
    Gercel-Taylor C, Atay S, Tullis RH, Kesimer M, Taylor DD. Nanoparticle analysis of circulating cell-derived vesicles in ovarian cancer patients. Anal Biochem. 2012;428(1):44–53.  https://doi.org/10.1016/j.ab.2012.06.004.Google Scholar
  68. 68.
    van der Pol E, Coumans F, Varga Z, Krumrey M, Nieuwland R. Innovation in detection of microparticles and exosomes. J Thromb Haemost. 2013;11(Suppl 1):36–45.  https://doi.org/10.1111/jth.12254.Google Scholar
  69. 69.
    Gardiner C, Ferreira YJ, Dragovic RA, Redman CW, Sargent IL. Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles. 2013.  https://doi.org/10.3402/jev.v2i0.19671.Google Scholar
  70. 70.
    Soo CY, Song Y, Zheng Y, Campbell EC, Riches AC, Gunn-Moore F, et al. Nanoparticle tracking analysis monitors microvesicle and exosome secretion from immune cells. Immunology. 2012;136(2):192–7.  https://doi.org/10.1111/j.1365-2567.2012.03569.x.Google Scholar
  71. 71.
    Tang K, Zhang Y, Zhang H, Xu P, Liu J, Ma J, et al. Delivery of chemotherapeutic drugs in tumour cell-derived microparticles. Nat Commun. 2012;3:1282.  https://doi.org/10.1038/ncomms2282.Google Scholar
  72. 72.
    Yang Y, Chen Y, Zhang F, Zhao Q, Zhong H. Increased anti-tumour activity by exosomes derived from doxorubicin-treated tumour cells via heat stress. Int J Hyperth. 2015;31(5):498–506.  https://doi.org/10.3109/02656736.2015.1036384.Google Scholar
  73. 73.
    de Moor JS, Cohen RA, Shapiro JA, Nadel MR, Sabatino SA, Robin YK, et al. Colorectal cancer screening in the United States: trends from 2008 to 2015 and variation by health insurance coverage. Prev Med. 2018;112:199–206.  https://doi.org/10.1016/j.ypmed.2018.05.001.Google Scholar
  74. 74.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5.  https://doi.org/10.1038/nature05384.Google Scholar
  75. 75.
    Brennen WN, Rosen DM, Wang H, Isaacs JT, Denmeade SR. Targeting carcinoma-associated fibroblasts within the tumor stroma with a fibroblast activation protein-activated prodrug. J Natl Cancer Inst. 2012;104(17):1320–34.  https://doi.org/10.1093/jnci/djs336.Google Scholar
  76. 76.
    Hu Y, Yan C, Mu L, Huang K, Li X, Tao D, et al. Fibroblast-derived exosomes contribute to chemoresistance through priming cancer stem cells in colorectal cancer. PLoS One. 2015;10(5):e0125625.  https://doi.org/10.1371/journal.pone.0125625.Google Scholar
  77. 77.
    Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH, Borovski T, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12(5):468–76.  https://doi.org/10.1038/ncb2048.Google Scholar

Copyright information

© Federación de Sociedades Españolas de Oncología (FESEO) 2018

Authors and Affiliations

  1. 1.Department of Oncology, The Second Xiangya HospitalCentral South UniversityChangshaChina

Personalised recommendations