Clinical and Translational Oncology

, Volume 21, Issue 2, pp 126–144 | Cite as

The microRNA signatures: aberrantly expressed miRNAs in prostate cancer

  • N. SharmaEmail author
  • M. M. Baruah
Review Article


MicroRNAs (miRNAs) are short, non-coding, conserved, oligonucleotides that are regulatory in nature and are often dysregulated in many cancers including prostate cancer. Depending on the level of complementarity between the miRNA and mRNA target, they can either inhibit translation or degrade the target mRNA. MiRNAs expression is specific to the type of cancer, its stage and level of metastasis, making miRNAs potential stage-specific biomarkers of cancer. Recent research has shown that these miRNAs have the potential to be a diagnostic and prognostic non-invasive biomarker for various cancers including prostate cancer. Various miRNAs have been reported as novel biomarkers for prostate cancer therapy. However, there is inconsistency in the data reported and no overlapping expression pattern could be found. In this review, we have highlighted the most consistently reported dysregulated miRNAs in prostate cancer from the existing literature and discussed the currently available data on their role in regulating the hallmarks of prostate cancer. These four most consistently reported dysregulated miRNAs viz. miRNA-141, miRNA-375, miRNA-221 and miRNA-21 need to be further validated in terms of their regulatory potential in regulating various pathways important for prostate cancer management.


MicroRNA Profiling Biomarker Prostate cancer 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not contain any studies with human participants hence informed consent is not applicable.


  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.Google Scholar
  2. 2.
    George GP, Gangwar R. Genetic variation in microRNA genes and prostate cancer risk in North Indian population. Mol Biol Rep. 2011;38:1609–15.Google Scholar
  3. 3.
    Agnihotri S, Mittal RD, Ahmad S, Mandhani A. Free to total serum prostate specific antigen ratio in symptomatic men does not help in differentiating benign from malignant disease of the prostate. Indian J Urol. 2014;30:28–32.Google Scholar
  4. 4.
    Bangma CH, Roemeling S, Schröder FH. Overdiagnosis and overtreatment of early detected prostate cancer. World J Urol. 2007;25:3–9.Google Scholar
  5. 5.
    Greene KL, Meng MV, Elkin EP, Cooperberg MR, Pasta DJ, Kattan MW, et al. Validation of the Kattan preoperative nomogram for prostate cancer recurrence using a community based cohort: results from cancer of the prostate strategic urological research endeavor (capsure). J Urol. 2004;171:2255–9.Google Scholar
  6. 6.
    Van Rooij E. The art of microRNA research. Circ Res. 2011;108:219–34.Google Scholar
  7. 7.
    Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta Mol Cell Res. 2010;1803:1231–43.Google Scholar
  8. 8.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.Google Scholar
  9. 9.
    Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6:376–85.Google Scholar
  10. 10.
    Rothschild SI. MicroRNA therapies in cancer. Mol Cell Ther. 2014;2:7.Google Scholar
  11. 11.
    Mao L, Oh Y. Does marijuana or crack cocaine cause cancer? J Natl Cancer Inst. 1998;90:1182–4.Google Scholar
  12. 12.
    Zhang B, Pan X, Cobb GP, Anderson TA. MicroRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302:1–12.Google Scholar
  13. 13.
    Lewis BP, Shih I, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115:787–98.Google Scholar
  14. 14.
    Peng Y, Croce CM. The role of microRNAs in human cancer. Signal Transduct Target Ther. 2016;1:15004.Google Scholar
  15. 15.
    Kim Y-K. Extracellular microRNAs as biomarkers in human disease. Chonnam Med J. 2015;51:51–7.Google Scholar
  16. 16.
    Sita-Lumsden A, Dart DA, Waxman J, Bevan CL. Circulating microRNAs as potential new biomarkers for prostate cancer. Br J Cancer. 2013;108:1925–30.Google Scholar
  17. 17.
    Schwarzenbach H, Nishida N, Calin GA, Pantel K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol. 2014;11:145–56.Google Scholar
  18. 18.
    Aryani A, Denecke B. In vitro application of ribonucleases: comparison of the effects on mRNA and miRNA stability. BMC Res Notes. 2015;8:164.Google Scholar
  19. 19.
    Wang L, Liu C, Li C, Xue J, Zhao S, Zhan P, et al. Effects of microRNA-221/222 on cell proliferation and apoptosis in prostate cancer cells. Gene. 1015;572:252–8.Google Scholar
  20. 20.
    Sun T, Yang M, Chen S, Balk S, Pomerantz M, Brown M, et al. The altered expression of miR-221/-222 and miR-23b/-27b is associated with the development of human castration resistant prostate cancer. Prostate. 2013;2:1093–103.Google Scholar
  21. 21.
    Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, stratagies and challenges. Nat Rev Drug Discov. 2010;9:775–89.Google Scholar
  22. 22.
    Su A, He S, Tian B, Hu W, Zhang Z. MicroRNA-221 mediates the effects of PDGF-BB on migration, proliferation, and the epithelial-mesenchymal transition in pancreatic cancer cells. PLoS One. 2013;8:e71309.Google Scholar
  23. 23.
    Gregory RI, Yan K, Amuthan G. The microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432:235–40.Google Scholar
  24. 24.
    Han J, Lee Y, Yeom K, Kim Y, Jin H, Kim VN. The Drosha—DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18:3016–27.Google Scholar
  25. 25.
    Bohnsack MT, Czaplinski K, Go D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 2004;10:185–91.Google Scholar
  26. 26.
    Bohrer LR, Chen S, Hallstrom TC, Huang H. A potential mechanism of androgen-refractory progression of prostate cancer. Endocrinology. 2015;151:5136–45.Google Scholar
  27. 27.
    Russell PJ, Kingsley EA. Human prostate cancer cell lines. Prostate Cancer Methods Protoc. 2003;81:21–39.Google Scholar
  28. 28.
    Lin S, Chang D, Ying S. Asymmetry of intronic pre-miRNA structures in functional RISC assembly. Gene. 2005;356:32–8.Google Scholar
  29. 29.
    Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005;123:631–40.Google Scholar
  30. 30.
    Cho WC. Molecular diagnostics for monitoring and predicting therapeutic effect in cancer. Expert Rev Mol Diagn. 2011;11:9–12.Google Scholar
  31. 31.
    Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TLJ, Visakorpi T. MicroRNA expression profiling in prostate cancer. Cancer Res. 2007;67:6130–5.Google Scholar
  32. 32.
    Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105:10513–8.Google Scholar
  33. 33.
    Agaoglu FY, Kovancilar M, Dizdar Y, Darendeliler E, Holdenrieder S, Dalay N, et al. Investigation of miR-21, miR-141, and miR-221 in blood circulation of patients with prostate cancer. Tumor Biol. 2011;32:583–8.Google Scholar
  34. 34.
    Brase JC, Johannes M, Schlomm T, Haese A, Steuber T, Beissbarth T, et al. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer. 2011;128:608–16.Google Scholar
  35. 35.
    Selth LA, Townley S, Gillis JL, Ochnik AM, Murti K, Macfarlane RJ, et al. Discovery of circulating microRNAs associated with human prostate cancer using a mouse model of disease. Int J Cancer. 2012;131:652–61.Google Scholar
  36. 36.
    Nguyen HCN, Xie W, Yang M, Hsieh C-L, Drouin S, Lee G-SM, et al. Expression differences of circulating microRNAs in metastatic castration resistant prostate cancer and low-risk, localized prostate cancer. Prostate. 2013;73:346–54.Google Scholar
  37. 37.
    Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432:226–30.Google Scholar
  38. 38.
    He X, Chang Y, Meng F, et al. MicroRNA-375 targets AEG-1 in hepatocellular carcinoma and suppresses liver cancer cell growth in vitro and in vivo. Oncogene. 2012;31:3357–69.Google Scholar
  39. 39.
    Ding L, Xu Y, Zhang W, et al. MiR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2. Cell Res. 2010;20:784–93.Google Scholar
  40. 40.
    Avissar M, Christensen BC, Kelsey KT, Marsit CJ. MicroRNA expression ratio is predictive of head and neck squamous cell carcinoma. Clin Cancer Res. 2009;15:2850–6.Google Scholar
  41. 41.
    Mathé EA, Nguyen GH, Bowman ED, et al. MicroRNA expression in squamous cell carcinoma and adenocarcinoma of the esophagus: associations with survival. Clin Cancer Res. 2009;15:6192–200.Google Scholar
  42. 42.
    Chang C, Shi H, Wang C, et al. Correlation of microRNA-375 downregulation with unfavorable clinical outcome of patients with glioma. Neurosci Lett. 2012;531:204–8.Google Scholar
  43. 43.
    Bryant RJ, Pawlowski T, Catto JWF, Marsden G, Vessella RL, Rhees B, et al. Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer. 2012;106:768–74.Google Scholar
  44. 44.
    Huang X, Yuan T, Liang M, Du M, Xia S, Dittmar R, et al. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol. 2015;67:33–41.Google Scholar
  45. 45.
    Galardi S, Mercatelli N, Giorda E, et al. MiR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines. J Biol Chem. 2007;282:23716–24.Google Scholar
  46. 46.
    Zhang C, Han LEI, Zhang A, et al. Global changes of mRNA expression reveals an increased activity of the interferon-induced signal transducer and activator of transcription (STAT) pathway by repression of miR-221/222 in glioblastoma U251 cells. Int J Oncol. 2010;36:1503–12.Google Scholar
  47. 47.
    Gramantieri L, Fornari F, Ferracin M, et al. MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin Cancer Res. 2009;15:5073–82.Google Scholar
  48. 48.
    Zhao J, Lin J, Yang H, et al. MicroRNA-221/222 negatively regulates estrogen receptor and is associated with tamoxifen resistance in breast cancer. J Biol Chem. 2008;283:31079–86.Google Scholar
  49. 49.
    Miele F, Costantini A, Spagnoli G, et al. The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS One. 2008;3:e4029.Google Scholar
  50. 50.
    Ivan GEM, Krichevsky AM, Gabriely G. MiR-21: a small multi-faceted RNA. J Cell Mol Med. 2009;13:39–53.Google Scholar
  51. 51.
    Kutay H, Bai S, Datta J, et al. Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem. 2006;99:671–8.Google Scholar
  52. 52.
    Zhang Z, Li Z, Gao C, Chen P, Chen J, Liu W, et al. MiR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest. 2008;88:1358–66.Google Scholar
  53. 53.
    Iorio MV, Visone R, Di Leva G, et al. MicroRNA signatures in human ovarian cancer. Cancer Res. 2007;67:8699–707.Google Scholar
  54. 54.
    Yang B, Liu Z, Ning H, Zhang K, Pan D, Ding K, et al. MicroRNA-21 in peripheral blood mononuclear cells as a novel biomarker in the diagnosis and prognosis of prostate cancer. Cancer Biomark. 2016;17:223–30.Google Scholar
  55. 55.
    Yang Y, Guo JX, Shao ZQ. MiR-21 targets and inhibits tumor suppressor gene PTEN to promote prostate cancer cell proliferation and invasion: an experimental study. Asian Pac J Trop Dis. 2017;10:87–91.Google Scholar
  56. 56.
    Zhang HL, Yang LF, Zhu Y, Yao XD, Zhang SL, Dai B, et al. Serum miRNA-21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate. 2011;71:326–31.Google Scholar
  57. 57.
    Shen J, Hruby GW, McKiernan JM, Gurvich I, Lipsky MJ, Benson MC, et al. Dysregulation of circulating microRNAs and prediction of aggressive prostate cancer. Prostate. 2012;72:1469–77.Google Scholar
  58. 58.
    Lodes MJ, Caraballo M, Suciu D, Munro S, Kumar A, Anderson B. Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS One. 2009;4:e6229.Google Scholar
  59. 59.
    Moltzahn F, Olshen AB, Baehner L, Peek A, Fong L, Stöppler H, et al. Microfluidic-based multiplex qRT-PCR identifies diagnostic and prognostic microRNA signatures in the sera of prostate cancer patients. Cancer Res. 2011;71:550–60.Google Scholar
  60. 60.
    Mahn R, Heukamp LC, Rogenhofer S, Von Ruecker A, Miller SC, Ellinger J. Circulating microRNAs (miRNA) in serum of patients with prostate cancer. Urology. 2011;77:1265.e9–16.Google Scholar
  61. 61.
    Chen ZH, Zhang GL, Li HR, Luo JD, Li ZX, Chen GM, et al. A panel of five circulating microRNAs as potential biomarkers for prostate cancer. Prostate. 2012;72:1443–52.Google Scholar
  62. 62.
    Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, et al. MicroRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci. 2006;103:9136–41.Google Scholar
  63. 63.
    Rouhi A, Mager DL, Humphries RK. MiRNAs, epigenetics, and cancer. Mamm Genome. 2008;19:517–25.Google Scholar
  64. 64.
    Chiosea S, Jelezcova E, Chandran U, Acquafondata M, Mchale T, Sobol RW, et al. Up-regulation of dicer, a component of the microRNA machinery, in prostate adenocarcinoma. Am J Pathol. 2006;169:1812–20.Google Scholar
  65. 65.
    Cimmino A, Ph D, Di Leva G, Ph D, Shimizu M, Wojcik SE, et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 2005;353:1793–801.Google Scholar
  66. 66.
    Jin Y, Lee CGL. Single nucleotide polymorphisms associated with microRNA regulation. Biomolecules. 2013;3:287–302.Google Scholar
  67. 67.
    Sikand K, Barik S, Shukla GC. MicroRNAs and androgen receptor 3′ untranslated region: a missing link in castration-resistant prostate cancer. Mol Cell Pharmacol. 2012;3:107–13.Google Scholar
  68. 68.
    Grady WM, Parkin RK, Mitchell PS, Lee JH, Kim Y, Tsuchiya KD, et al. Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene. 2008;27:3880–8.Google Scholar
  69. 69.
    Saini HK, Griffiths-jones S, Enright AJ. Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci. 2007;104:17719–24.Google Scholar
  70. 70.
    Vrba L, Jensen TJ, Garbe JC, Heimark RL, Cress AE, Dickinson S, et al. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One. 2010;5:e8697.Google Scholar
  71. 71.
    Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci. 2007;104:15805–10.Google Scholar
  72. 72.
    Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 2004;101:2999–3004.Google Scholar
  73. 73.
    Thomson JM, Newman M, Parker JS, Morin-kensicki EM, Wright T, Hammond SM. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 2006;20:2202–7.Google Scholar
  74. 74.
    Lagos-quintana M, Rauhut R, Yalcin A, et al. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002;12:735–9.Google Scholar
  75. 75.
    Manikandan M, Munirajan AK. Single nucleotide polymorphisms in microRNA binding sites of oncogenes: implications in cancer and pharmacogenomics. OMICS. 2014;18:142–54.Google Scholar
  76. 76.
    Jazdzewski K, Murray EL, Franssila K, et al. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci. 2016;105:7269–74.Google Scholar
  77. 77.
    Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev. 2004;25:276–308.Google Scholar
  78. 78.
    Isaacs JT, Isaacs WB. Androgen receptor outwits prostate cancer drugs. Nat Med. 2004;10:26–7.Google Scholar
  79. 79.
    Stricker HJ. Luteinizing Hormone-releasing hormone antagonists in prostate cancer. Urology. 2001;58:24–7.Google Scholar
  80. 80.
    Griend DJV, Antonio JD, Gurel B, Antony L, DeMArzo AM, Isaacs JT. Cell-autonomous intracellular androgen receptor signaling drives the growth of human prostate cancer initiating cells. Prostate. 2011;70:90–9.Google Scholar
  81. 81.
    Waltering KK, Helenius MA, Sahu B, Manni V, Linja MJ, Ja OA, et al. Increased expression of androgen receptor sensitizes prostate cancer cells to low levels of androgens. Cancer Res. 2009;69:8141–9.Google Scholar
  82. 82.
    Craft N, Shostak Y, Carey M, Sawyers CL. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med. 1999;5:280–5.Google Scholar
  83. 83.
    Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med. 2004;10:33–9.Google Scholar
  84. 84.
    Raffo AJ, Perlman H, Chen M, Day ML, Streitman JS, Buttyan R. Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res. 1995;55:4438–45.Google Scholar
  85. 85.
    Kinoshita H, Shi Y, Sandefur C, Meisner LF, Chang C, Choon A, et al. Methylation of the androgen receptor minimal promoter silences transcription in human prostate cancer. Cancer Res. 2000;60:3623–30.Google Scholar
  86. 86.
    Waltering KK, Porkka KP, Jalava SE, Urbanucci A, Kohonen PJ, Latonen LM, et al. Androgen regulation of microRNAs in prostate cancer. Prostate. 2011;71:604–14.Google Scholar
  87. 87.
    Xiao J, Gong A, Eischeid AN, Chen D, Deng C, Young CYF, et al. MiR-141 modulates androgen receptor transcriptional activity in human prostate cancer cells through targeting the small heterodimer partner protein. Prostate. 2012;72:1514–22.Google Scholar
  88. 88.
    Komatsu S, Ichikawa D, Takeshita H, Tsujiura M, Morimura R, Nagata H, et al. Circulating microRNAs in plasma of patients with oesophageal squamous cell carcinoma. Br J Cancer. 2011;105:104–11.Google Scholar
  89. 89.
    Lajer CB, Nielsen FC, Norrild B, Borup R, Garnæs E, Rossing M, et al. Different miRNA signatures of oral and pharyngeal squamous cell carcinomas: a prospective translational study. Br J Cancer. 2011;104:830–40.Google Scholar
  90. 90.
    Basu A, Alder H, Khiyami A, Leahy P, Croce CM, Haldar S. MicroRNA-375 and microRNA-221: potential noncoding RNAs associated with antiproliferative activity of benzyl isothiocyanate in pancreatic cancer. Genes Cancer. 2011;2:108–19.Google Scholar
  91. 91.
    Wang F, Li Y, Zhou J. MiR-375 is down-regulated in squamous cervical cancer and inhibits cell migration and invasion via targeting transcription factor SP1. Am J Pathol. 2011;179:2580–8.Google Scholar
  92. 92.
    Nohata N, Hanazawa T, Kikkawa N, Mutallip M, Sakurai D, Fujimura L, et al. Tumor suppressive microRNA-375 regulates oncogene AEG-1/MTDH in head and neck squamous cell carcinoma (HNSCC). J Hum Genet. 2011;56:595–601.Google Scholar
  93. 93.
    Mazar J, Khaitan D, Deblasio D, Zhong C, Govindarajan SS, Kopanathi S, et al. Epigenetic regulation of microRNA genes and the role of miR-34b in cell invasion and motility in human melanoma. PLoS One. 2011;6:e24922.Google Scholar
  94. 94.
    Szczyrba J, Nolte E, Wach S, Kremmer E, Hartmann A, Wieland W, et al. Downregulation of sec23a protein by miRNA-375 in prostate carcinoma. Mol Cancer Res. 2011;9:791–801.Google Scholar
  95. 95.
    De Souza P, Simonini R, Breiling A, Gupta N, Malekpour M, Youns M, et al. Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor α in breast cancer cells. Cancer Res. 2010;70:9175–85.Google Scholar
  96. 96.
    Chu M, Chang Y, Li P, Guo Y. Androgen receptor is negatively correlated with the methylation-mediated transcriptional repression of miR-375 in human prostate cancer cells. Oncol Rep. 2014;31:34–40.Google Scholar
  97. 97.
    Costa-Pinheiro P, Ramalho-Carvalho J, Vieira FQ, Torres-Ferreira J, Oliveira J, Gonçalves CS, et al. MicroRNA-375 plays a dual role in prostate carcinogenesis. Clin Epigenetics. 2015;7:42.Google Scholar
  98. 98.
    Guichet A, Ephrussi A, Casanova J. Relief of gene repression by torso RTK signaling: role of capicua in Drosophila terminal and dorsoventral patterning. Genes Dev. 2000;14:224–31.Google Scholar
  99. 99.
    Choi N, Park J, Lee J, Yoe J, Park GY, Kim E, et al. MiR-93/miR-106b/miR-375-CIC-CRABP1: a novel regulatory axis in prostate cancer progression. Oncotarget. 2015;6:23533–47.Google Scholar
  100. 100.
    Kainov Y, Favorskaya I, Delektorskaya V, Chemeris G, Komelkov A, Zhuravskaya A. CRABP1 provides high malignancy of transformed mesenchymal cells and contributes to the pathogenesis of mesenchymal and neuroendocrine tumors. Cell Cycle. 2014;13:1530–9.Google Scholar
  101. 101.
    Russell PJ, Kingsley EA. Human prostate cancer cell lines. Methods Mol Med. 2003;81:21–39.Google Scholar
  102. 102.
    Sirotnak FM, She Y, Khokhar NZ, Hayes P, Gerald W, Scher HI. Microarray analysis of prostate cancer progression to reduced androgen dependence: studies in unique models contrasts early and late molecular events. Mol Carcinog. 2004;41:150–63.Google Scholar
  103. 103.
    Sun T, Wang Q, Balk S, Sun T, Wang Q, Balk S, et al. The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. Cancer Res. 2009;69:3356–63.Google Scholar
  104. 104.
    Zheng C, Yinghao S, Li J. MiR-221 expression affects invasion potential of human prostate carcinoma cell lines by targeting DVL2. Med Oncol. 2012;29:815–22.Google Scholar
  105. 105.
    Hu C, Choo R, Huang J, Ned T. Neuroendocrine differentiation in prostate cancer: a mechanism of radioresistance and treatment failure. Front Oncol. 2015;5:1–10.Google Scholar
  106. 106.
    Xing N, Qian J, Bostwick D, Bergstralh E, Young CYF. Neuroendocrine cells in human prostate over-express the anti-apoptosis protein survivin. Prostate. 2001;48:7–15.Google Scholar
  107. 107.
    Cadden IS, Johnston BT, Connolly R, Gates D, Tsujimoto Y, Eguchi Y, et al. An investigation into the role of Bcl-2 in neuroendocrine differentiation. Biochem Biophys Res Commun. 2005;326:442–8.Google Scholar
  108. 108.
    Sun T, Wang X, He HH, Sweeney CJ, Liu SX, Brown M, Balk S, Lee GS, Kantoff PW. MiR-221 promotes the development of androgen independence in prostate cancer cells via downregulation of HECTD2 and RAB1A. Oncogene. 2014;33:2790–800.Google Scholar
  109. 109.
    Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J, et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell. 2009;138:245–56.Google Scholar
  110. 110.
    Feng Jiang, Zhou Wang. Identification and characterization of PLZF as a prostatic androgen-responsive gene. Prostate. 2004;59:426–35.Google Scholar
  111. 111.
    Ribas J, Ni X, Haffner M, Wentzel EA, Hassanzadeh A, Chowdhury WH, et al. MiR-21: an androgen receptor regulated microRNA which promotes hormone dependent and independent prostate cancer growth. Cancer Res. 2010;69:7165–9.Google Scholar
  112. 112.
    Mishra S, Lin C, Huang TH, Bouamar H, Sun L. MicroRNA-21 inhibits p57 Kip2 expression in prostate cancer. Mol Cancer. 2014;13:212.Google Scholar
  113. 113.
    Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, Holcombe RF, Mahajna J, et al. Sustained proliferation in cancer: mechanisms and novel therapeutic targets. Semin Cancer Biol. 2015;35:S25–54.Google Scholar
  114. 114.
    Farber E. Cell proliferation as a major risk factor for cancer: a concept of doubtful. Cancer Res. 1995;55:3759–62.Google Scholar
  115. 115.
    Fang Y, Fullwood MJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genom Proteom Bioinform. 2016;14:42–54.Google Scholar
  116. 116.
    Qiao D, Yang J, Lei X, Mi G, Li S, Li K. Expression of microRNA-122 and microRNA-22 in HBV-related liver cancer and the correlation with clinical features. Eur Rev Med Pharmacol. 2017;21:742–7.Google Scholar
  117. 117.
    Liu Y, Liu R, Yang F, Cheng R, Chen X, Cui S, et al. MiR-19a promotes colorectal cancer proliferation and migration by targeting TIA1. Mol Cancer. 2017;16:53.Google Scholar
  118. 118.
    Sun J, Shi R, Zhao S, Li X, Lu S, Bu H, et al. E2F8, a direct target of miR-144, promotes papillary thyroid cancer progression via regulating cell cycle. J Exp Clin Cancer Res. 2017;36:40.Google Scholar
  119. 119.
    Yunhui Q. Effect of microRNA - 373 on proliferation and invasion of breast cancer cells and its mechanism. Chin J Med Sci. 2017;97:603–7.Google Scholar
  120. 120.
    Su Z, Zhang M, Xu M, et al. MicroRNA181c inhibits prostate cancer cell growth and invasion by targeting multiple ERK signaling pathway components. Prostate. 2018;78:343–52.Google Scholar
  121. 121.
    Liu Y, Xu XIN, Xu X, et al. MicroRNA—193a–3p inhibits cell proliferation in prostate cancer by targeting cyclin D1. Oncol Lett. 2017;14:5121–8.Google Scholar
  122. 122.
    Hao P, Kang BO, Yao G, et al. MicroRNA-211 suppresses prostate cancer proliferation by targeting SPARC. Oncol Lett. 2018;15:4323–9.Google Scholar
  123. 123.
    Shin M, Mizokami A, Kim J, et al. Exogenous SPARC suppresses proliferation and migration of prostate cancer by interacting with integrin β1. Prostate. 2013;73:1159–70.Google Scholar
  124. 124.
    Dai H, Wang C. MiR-17 regulates prostate cancer cell proliferation. Cancer Biother Radiopharm. 2018;33:103–9.Google Scholar
  125. 125.
    Guo JU, Xiao Z, Yu X, Cao R. MiR-20b promotes cellular proliferation and migration by directly regulating phosphatase and tensin homolog in prostate cancer. Oncol Lett. 2017;14:6895–900. Scholar
  126. 126.
    Yin Y, et al. MiR-671 promotes prostate cancer cell proliferation by targeting tumor suppressor SOX6. Eur J Pharmacol. 2018;823:65–71.Google Scholar
  127. 127.
    Du Y, Wang L, Wu H, Zhang Y, Wang KAN, Wu D. MicroRNA-141 inhibits migration of gastric cancer by targeting zinc finger E-box-binding homeobox 2. Mol Med Rep. 2015;12:3416–22.Google Scholar
  128. 128.
    Chen CL, Tseng YW, Wu JC, Chen GY, Lin KC, Hwang SM, et al. Suppression of hepatocellular carcinoma by baculovirus-mediated expression of long non-coding RNA PTENP1 and MicroRNA regulation. Biomaterials. 2015;44:71–81.Google Scholar
  129. 129.
    Li J, Li J, Wang H, Li X, Wen B, Wang Y. MiR-141-3p promotes prostate cancer cell proliferation through inhibiting kruppel-like factor-9 expression. Biochem Biophys Res Commun. 2016;482:1381–6.Google Scholar
  130. 130.
    Pickl JMA, Tichy D, Kuryshev VY, Tolstov Y, Schüler J, Reidenbach D, et al. Ago-RIP-Seq identifies polycomb repressive complex I member CBX7 as a major target of miR-375 in prostate cancer progression. Oncotarget. 2016;7:59589–603.Google Scholar
  131. 131.
    Kempkensteffen SHC, Krause FCH, Schostak MSM, Weikert KMS. Expression parameters of the polycomb group urothelial carcinoma of the bladder and their prognostic relevance. Tumor Biol. 2008;29:323–9.Google Scholar
  132. 132.
    Mansueto G, Forzati F, Ferraro A, Pallante P, Bianco M, Esposito F, et al. Identification of a new pathway for tumor progression: microRNA-181b up-regulation and CBX7 down-regulation by HMGA1 protein. Genes Cancer. 2010;46:2304–13.Google Scholar
  133. 133.
    Pallante P, Terracciano L, Carafa V, Schneider S, Zlobec I, Lugli A, et al. The loss of the CBX7 gene expression represents an adverse prognostic marker for survival of colon carcinoma patients. Eur J Cancer. 2010;46:2304–13.Google Scholar
  134. 134.
    Xiao W, Qu C, Qin J, Xing F, Sun Y, Li Z, Qiu J. CBX8, a novel DNA repair protein, promotes tumorigenesis in human esophageal carcinoma. Int J Clin Exp Pathol. 2014;7:4817.Google Scholar
  135. 135.
    Hyup S, Um S, Kim E. CBX8 suppresses sirtinol-induced premature senescence in human breast cancer cells via cooperation with SIRT1. Cancer Lett. 2013;335:397–403.Google Scholar
  136. 136.
    Yang X, Yang Y, Gan R, Zhao L, Li W, Zhou H, et al. Down-regulation of miR-221 and miR-222 restrain prostate cancer cell proliferation and migration that is partly mediated by activation of SIRT1. PLoS One. 2014;9:e98833.Google Scholar
  137. 137.
    Lin Z, Fang D. The roles of SIRT1 in cancer. Genes Cancer. 2013;4:97–104.Google Scholar
  138. 138.
    Fu M, Liu M, Sauve AA, Jiao X, Zhang X, Wu X, et al. Hormonal control of androgen receptor function through SIRT1. Mol Cell Biol. 2006;26:8122–35.Google Scholar
  139. 139.
    Xuan H, Xue W, Pan J, Sha J, Dong B, Huang Y. Downregulation of miR 221, 30d, and 15a contributes to pathogenesis of prostate cancer by targeting Bmi 1. Biochemistry. 2015;80:276–83.Google Scholar
  140. 140.
    Chen Y, Zaman MS, Deng G, Majid S, Saini S, Liu J. MicroRNAs 221/222 and genistein-mediated regulation of ARHI tumor suppressor gene in prostate cancer. Cancer Prev Res. 2011;4:76–87.Google Scholar
  141. 141.
    Yang Y, Guo J, Shao Z. MiR-21 targets and inhibits tumor suppressor gene PTEN to promote prostate cancer cell proliferation and invasion: an experimental study. Asian Pac J Trop Med. 2016;10:87–91.Google Scholar
  142. 142.
    Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 2012;13:283–96.Google Scholar
  143. 143.
    Nistico P, Bissell MJ, Radisky DC. Epithelial-mesenchymal transition: general principles and pathological relevance with special emphasis on the role of matrix metalloproteinases. Cold Spring Harb Perspect Biol. 2012;4:a011908.Google Scholar
  144. 144.
    Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008;14:818–29.Google Scholar
  145. 145.
    Larue L, Bellacosa A. Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene. 2005;24:7443–54.Google Scholar
  146. 146.
    Cai H. MicroRNA-194 modulates epithelial—mesenchymal transition in human colorectal cancer metastasis. Onco Targets Ther. 2017;10:1269–78.Google Scholar
  147. 147.
    Liu Y, Sun X, Cao X, et al. MicroRNA-217 suppressed epithelial-to- mesenchymal transition in gastric cancer metastasis through targeting PTPN14. Eur Rev Med Pharmacol Sci. 2017;21:1759–67.Google Scholar
  148. 148.
    Zhang J, Liu D, Feng Z, et al. MicroRNA-138 modulates metastasis and EMT in breast cancer cells by targeting vimentin. Biomed Pharmacother. 2016;77:135–41.Google Scholar
  149. 149.
    Williams LV, et al. MiR-200b inhibits prostate cancer EMT, growth and metastasis. PloS One. 2013;8:e83991.Google Scholar
  150. 150.
    Zhao X, Wang Y, Deng R, et al. MiR186 suppresses prostate cancer progression by targeting Twist1. Oncotarget. 2016;7:33136–51.Google Scholar
  151. 151.
    Josson S, Gururajan M, Hu P. MiR-409-3p/-5p promotes tumorigenesis, epithelial-to-mesenchymal transition, and bone metastasis of human prostate cancer metastasis of human prostate cancer. Clin Cancer Res. 2014;20:4636–46.Google Scholar
  152. 152.
    Tang G, et al. MiRNALet-7a mediates prostate cancer PC-3 cell invasion, migration by inducing epithelial-mesenchymal transition through CCR7/MAPK pathway. J Cell Biochem. 2018;119:3725–31.Google Scholar
  153. 153.
    Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E. Simone spaderna TB. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008;9:582–9.Google Scholar
  154. 154.
    Liu C, Liu R, Zhang D, Deng Q, Liu B, Chao H, et al. MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes. Nat Commun. 2017;8:1–14.Google Scholar
  155. 155.
    Ambs S, Prueitt RL, Yi M, Hudson RS, Howe TM, Wallace TA, et al. Genomic profiling of microRNA and mRNA reveals deregulated microRNA expression in prostate cancer. Cancer Res. 2009;68:6162–70.Google Scholar
  156. 156.
    Martens-uzunova ES, Jalava SE, Dits NF, Van Leenders GJ, Møller S, Trapman J. Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene. 2012;31:978–91.Google Scholar
  157. 157.
    Selth LA, Das R, Townley SL, Coutinho I, Hanson AR, Centenera MM, et al. A ZEB1-miR-375-YAP1 pathway regulates epithelial plasticity in prostate cancer. Oncogene. 2016;36:24–34.Google Scholar
  158. 158.
    Hong J, Sun J, Huang T. Increased expression of TRPS1 affects tumor progression and correlates with patients’ prognosis of colon cancer. Biomed Res Int. 2013;2013:454085.Google Scholar
  159. 159.
    Zavadil J, Böttinger EP. TGF-β and epithelial-to-mesenchymal transitions. Oncogene. 2005;24:5764–74.Google Scholar
  160. 160.
    Bonkhoff H, Stein U, Remberger K. The proliferative function of basal cells in the normal and hyperplastic human prostate. Prostate. 1994;24:114–8.Google Scholar
  161. 161.
    Lawson DA, Witte ON. Stem cells in prostate cancer initiation and progression. J Clin Invest. 2007;117:2044–50.Google Scholar
  162. 162.
    Mcdonnell TJ, Troncoso P, Brisbay SM, Logothetis C, Chung LWK, Hsieh J, et al. Advances in brief expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res. 1992;52:6940–4.Google Scholar
  163. 163.
    Melamed J, Kernizan S, Walden PD. Expression of B-cell translocation gene 2 protein in normal human tissues. Tissue Cell. 2002;34:28–32.Google Scholar
  164. 164.
    Signoretti S, Pires MM, Lindauer M, Horner JW, Grisanzio C, Dhar S, et al. p63 regulates commitment to the prostate cell lineage. Proc Natl Acad Sci USA. 2005;102:11355–60.Google Scholar
  165. 165.
    Signoretti S, Waltregny D, Dilks J, Isaac B, Lin D, Garraway L, et al. p63 is a prostate basal cell marker and is required for prostate development. Am J Pathol. 2006;157:1769–75.Google Scholar
  166. 166.
    Barbieri CE, Tang LJ, Brown KA, Pietenpol JA. Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis. Cancer Res. 2006;66:7589–98.Google Scholar
  167. 167.
    Boiko AD, Porteous S, Razorenova OV, Krivokrysenko VI, Williams BR, Gudkov AV. A systematic search for downstream mediators of tumor suppressor function of p53 reveals a major role of BTG2 in suppression of Ras-induced transformation. Genes Dev. 2006;20:236–52.Google Scholar
  168. 168.
    Coppola V, Musumeci M, Patrizii M, Cannistraci A, Addario A. BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial—mesenchymal transition. Oncogene. 2013;32:1843–53.Google Scholar
  169. 169.
    Lowe SW, Lin AW. Apoptosis in cancer. Carcinogenesis. 2000;21:485–95.Google Scholar
  170. 170.
    Wong RSY. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30:87.Google Scholar
  171. 171.
    Maralani M, Neagoe IB. Micrornas as regulators of apoptosis mechanisms in cancer. Clujul Med. 2016;89:50–5.Google Scholar
  172. 172.
    Nakano H, Miyazawa T, Kinoshita K, Yamada Y, Yoshida T. Functional screening identifies a microRNA, miR-491 that induces apoptosis by targeting Bcl-X L in colorectal cancer cells. Int J Cancer. 2010;127:1072–80.Google Scholar
  173. 173.
    Ji F, Zhang H, Wang Y, Li M, Xu W, Kang Y, et al. MicroRNA-133a, downregulated in osteosarcoma, suppresses proliferation and promotes apoptosis by targeting Bcl-xL and Mcl-1. Bone. 2013;56:220–6.Google Scholar
  174. 174.
    Hamada S, Masamune A, Miura S, Satoh K, Shimosegawa T. MiR-365 induces gemcitabine resistance in pancreatic cancer cells by targeting the adaptor protein SHC1 and pro-apoptotic regulator BAX. Cell Signal. 2014;26:179–85.Google Scholar
  175. 175.
    Zhou M, Liu Z, Zhao Y, Ding Y, Liu H, Xi Y, et al. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem. 2010;285:21496–507.Google Scholar
  176. 176.
    Han G, Fan M, Zhang X. MicroRNA-218 inhibits prostate cancer cell growth and promotes apoptosis by repressing TPD52 expression. Biochem Biophys Res Commun. 2014;456:804–9.Google Scholar
  177. 177.
    Colden M, Dar AA, Saini S, et al. MicroRNA-466 inhibits tumor growth and bone metastasis in prostate cancer by direct regulation of osteogenic transcription factor RUNX2. Cell Death Dis. 2017;8:e2572.Google Scholar
  178. 178.
    Luo Y, Qiu M. MiR-143 induces the apoptosis of prostate cancer LNCap cells by suppressing Bcl-2 expression. Med Sci Monit. 2017;23:359–65.Google Scholar
  179. 179.
    Zhu D, Gao W, Zhang Z. MicroRNA-1180 is associated with growth and apoptosis in prostate cancer via TNF receptor associated factor 1 expression regulation and nuclear factor-κB signaling pathway activation. Oncol Lett. 2018;15:4775–80.Google Scholar
  180. 180.
    Xu H, Mei Q, Shi L, Lu J, Zhao J, Fu Q. Tumor-suppressing effects of miR451 in human osteosarcoma. Cell Biochem Biophys. 2014;69:163–8.Google Scholar
  181. 181.
    Zhao G, Wang B, Liu Y, Zhang J, Deng S, Qin Q, et al. MiRNA-141, downregulated in pancreatic cancer, inhibits cell proliferation and invasion by directly targeting MAP4K4. Mol Cancer Ther. 2013;12:2569–81.Google Scholar
  182. 182.
    Lynch SM, Neill KMO, Mckenna MM, Walsh CP. Regulation of miR-200c and miR-141 by methylation in prostate cancer. Prostate. 2016;76:1146–59.Google Scholar
  183. 183.
    Kneitz B, Krebs M, Kalogirou C, Schubert M, Joniau S, Van Poppel H, et al. Survival in patients with high-risk prostate cancer is predicted by miR-221, which regulates proliferation, apoptosis, and invasion of prostate cancer cells by inhibiting IRF2 and SOCS3. Cancer Res. 2014;74:2591–604.Google Scholar
  184. 184.
    Hatley ME, Patrick DM, Garcia MR, Richardson JA, Duby RB, Van Rooij E, Olson EN. Modulation of K-ras-dependent lung tumorigenesis by microRNA-21. Cancer Cell. 2011;18:282–93.Google Scholar
  185. 185.
    Si M, Zhu S, Wu H, Lu Z, Wu F, Mo Y. MiR-21—mediated tumor growth. Oncogene. 2007;26:2799–803.Google Scholar
  186. 186.
    Folini M, Gandellini P, Longoni N, Profumo V, Callari M, Pennati M, et al. MiR-21: an oncomir on strike in prostate cancer. Mol Cancer. 2010;9:1–12.Google Scholar
  187. 187.
    Yang CH, Pfeffer SR, Sims M, Yue J, Wang Y, Linga VG, et al. The oncogenic microRNA-21 inhibits the tumor suppressive activity of FBXO11 to promote tumorigenesis. J Biol Chem. 2015;290:6037–46.Google Scholar

Copyright information

© Federación de Sociedades Españolas de Oncología (FESEO) 2018

Authors and Affiliations

  1. 1.Symbiosis School of Biological SciencesSymbiosis International (Deemed University)PuneIndia

Personalised recommendations