Circular RNAs and exosomes in cancer: a mysterious connection

  • J. Hou
  • W. Jiang
  • L. Zhu
  • S. Zhong
  • H. Zhang
  • J. Li
  • S. Zhou
  • S. Yang
  • Y. He
  • D. Wang
  • X. Chen
  • F. Deng
  • Q. Zhang
  • J. Wang
  • J. Hu
  • W. Zhang
  • L. Ding
  • J. Zhao
  • J. Tang
Review Article
  • 199 Downloads

Abstract

Circular RNAs (CircRNAs) are a type of non-coding RNAs (NcRNAs) with a closed annular structure. Until next-generation sequencing (NGS) is developed, the misunderstanding of circRNAs ‘splicing error’ has changed, and the mysterious veil of circRNAs has been revealed. NGS provides an approach to investigate circRNAs. Many scholars point out that circRNAs may play an important role in many diseases, especially cancer. At the same time, exosomes, as a kind of extracellular vesicles loaded with many contents, are a hotspot in recent years. They can act as ‘messengers’ between cells, especially in cancer. Lately, it is interesting circRNAs are enriched and stable in exosomes, also called exo-circRNAs, and there have been several articles on circRNAs associated with exosomes. In this review, we summarize the characteristics of circRNAs, especially its main functions. Then, we briefly introduce exosomes and their function in cancer. Finally, the known relation between circRNAs and exosomes is discussed. With further researches, exo-circRNAs may be a novel pathway for cancer diagnosis and targeted therapy.

Keywords

Circular RNAs CircRNAs Exosomes Extracellular vesicles Non-coding RNAs Cancer 

Notes

Acknowledgments

We thank the members of our laboratory for support and advice. Jun-chen Hou and Wen Jiang contributed equally to this work and should be considered co-first authors.

Compliance with ethical standards

Conflict of interest

The author declares that they have no conflict of interest.

Ethical approval

There are no human and animal in this study.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA. 1976;73(11):3852–6.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kolakofsky D. Isolation and characterization of Sendai virus DI-RNAs. Cell. 1976;8(4):547–55.CrossRefPubMedGoogle Scholar
  3. 3.
    Kelly S, Greenman C, Cook PR, Papantonis A. Exon skipping is correlated with exon circularization. J Mol Biol. 2015;427(15):2414–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA (New York, NY). 2013;19(2):141–57.CrossRefGoogle Scholar
  5. 5.
    Wilusz JE, Sharp PA. Molecular biology. A circuitous route to noncoding RNA. Science (New York, NY). 2013;340(6131):440–1.CrossRefGoogle Scholar
  6. 6.
    Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011;12(2):99–110.CrossRefPubMedGoogle Scholar
  7. 7.
    Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PloS One. 2012;7(2):e30733.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wang PL, Bao Y, Yee MC, Barrett SP, Hogan GJ, Olsen MN, et al. Circular RNA is expressed across the eukaryotic tree of life. PloS One. 2014;9(6):e90859.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Danan M, Schwartz S, Edelheit S, Sorek R. Transcriptome-wide discovery of circular RNAs in Archaea. Nucl Acids Res. 2012;40(7):3131–42.CrossRefPubMedGoogle Scholar
  10. 10.
    Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015;25(8):981–4.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L. Complementary sequence-mediated exon circularization. Cell. 2014;159(1):134–47.CrossRefPubMedGoogle Scholar
  12. 12.
    Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Cell-type specific features of circular RNA expression. PLoS Genet. 2013;9(9):e1003777.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer. Cancer Res. 2013;73(18):5609–12.CrossRefPubMedGoogle Scholar
  15. 15.
    Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell. 2011;146(3):353–8.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhou B, Yu JW. A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-beta1. Biochem Biophys Res Commun. 2017;487(4):769–75.CrossRefPubMedGoogle Scholar
  18. 18.
    Tang CM, Zhang M, Huang L, Hu ZQ, Zhu JN, Xiao Z, et al. CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci Rep. 2017;7:40342.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Xue J, Liu Y, Luo F, Lu X, Xu H, Liu X, et al. Circ100284, via miR-217 regulation of EZH2, is involved in the arsenite-accelerated cell cycle of human keratinocytes in carcinogenesis. Biochim Biophys Acta. 2017;1863(3):753–63.CrossRefPubMedGoogle Scholar
  20. 20.
    Xu L, Zhang M, Zheng X, Yi P, Lan C, Xu M. The circular RNA ciRS-7 (Cdr1as) acts as a risk factor of hepatic microvascular invasion in hepatocellular carcinoma. J Cancer Res Clin Oncol. 2017;143(1):17–27.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhao Y, Alexandrov PN, Jaber V, Lukiw WJ. Deficiency in the ubiquitin conjugating enzyme UBE2A in alzheimer’s disease (AD) is linked to deficits in a natural circular miRNA-7 sponge (circRNA; ciRS-7). Genes. 2016;7(12):116.CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Xu H, Guo S, Li W, Yu P. The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep. 2015;5:12453.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Peng L, Chen G, Zhu Z, Shen Z, Du C, Zang R, et al. Circular RNA ZNF609 functions as a competitive endogenous RNA to regulate AKT3 expression by sponging miR-150-5p in Hirschsprung’s disease. Oncotarget. 2017;8(1):808–18.PubMedGoogle Scholar
  24. 24.
    Chen L, Zhang S, Wu J, Cui J, Zhong L, Zeng L et al. circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family. Oncogene. 2017;36(32):4551–61.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zhong Z, Lv M, Chen J. Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Sci Rep. 2016;6:30919.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nature Commun. 2016;7:11215.CrossRefGoogle Scholar
  27. 27.
    Xie H, Ren X, Xin S, Lan X, Lu G, Lin Y, et al. Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget. 2016;7(18):26680–91.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Wang K, Long B, Liu F, Wang JX, Liu CY, Zhao B, et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J. 2016;37(33):2602–11.CrossRefPubMedGoogle Scholar
  29. 29.
    Chen J, Li Y, Zheng Q, Bao C, He J, Chen B, et al. Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer. Cancer Lett. 2017;388:208–19.CrossRefPubMedGoogle Scholar
  30. 30.
    Liu Q, Zhang X, Hu X, Dai L, Fu X, Zhang J, et al. Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a miR-136 ‘Sponge’ in human cartilage degradation. Sci Rep. 2016;6:22572.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhang C, Wu H, Wang Y, Zhao Y, Fang X, Chen C, et al. Expression patterns of circular RNAs from primary kinase transcripts in the mammary glands of lactating rats. J Breast Cancer. 2015;18(3):235–41.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Liu YC, Li JR, Sun CH, Andrews E, Chao RF, Lin FM, et al. CircNet: a database of circular RNAs derived from transcriptome sequencing data. Nucl Acids Res. 2016;44(D1):D209–15.CrossRefPubMedGoogle Scholar
  33. 33.
    Han D, Li J, Wang H, Su X, Hou J, Gu Y, et al. Circular RNA MTO1 acts as the sponge of miR-9 to suppress hepatocellular carcinoma progression. Hepatology 2017;66(4):1151–64.CrossRefPubMedGoogle Scholar
  34. 34.
    Wang K, Gan TY, Li N, Liu CY, Zhou LY, Gao JN, et al. Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression. Cell Death Differ. 2017;24(6):1111–20.CrossRefPubMedGoogle Scholar
  35. 35.
    Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nature Struct Mol Biol. 2015;22(3):256–64.CrossRefGoogle Scholar
  36. 36.
    Conn VM, Hugouvieux V, Nayak A, Conos SA, Capovilla G, Cildir G, et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nature Plants. 2017;3:17053.CrossRefPubMedGoogle Scholar
  37. 37.
    Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nature Biotechnol. 2014;32(5):453–61.CrossRefGoogle Scholar
  38. 38.
    Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, et al. Circular intronic long noncoding RNAs. Mol Cell. 2013;51(6):792–806.CrossRefPubMedGoogle Scholar
  39. 39.
    Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, et al. Circ-ZNF609 is a circular rna that can be translated and functions in myogenesis. Mol Cell. 2017;66(1):22–37.e9.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, et al. Translation of CircRNAs. Mol Cell. 2017;66(1):9–21.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Whiteside TL. Tumor-derived exosomes and their role in tumor-induced immune suppression. Vaccines. 2016;4(4):35.CrossRefPubMedCentralGoogle Scholar
  42. 42.
    Soung YH, Ford S, Zhang V, Chung J. Exosomes in cancer diagnostics. Cancers. 2017;9(1):8.CrossRefPubMedCentralGoogle Scholar
  43. 43.
    Wang J, Deng Z, Wang Z, Wu J, Gu T, Jiang Y, et al. MicroRNA-155 in exosomes secreted from helicobacter pylori infection macrophages immunomodulates inflammatory response. Am J Transl Res. 2016;8(9):3700–9.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Hao YX, Li YM, Ye M, Guo YY, Li QW, Peng XM, et al. KRAS and BRAF mutations in serum exosomes from patients with colorectal cancer in a Chinese population. Oncol Lett. 2017;13(5):3608–16.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sinha A, Alfaro J, Kislinger T. Characterization of protein content present in exosomes isolated from conditioned media and urine. Curr Protoc Protein Sci. 2017;87:24.9.1–9.12.CrossRefGoogle Scholar
  46. 46.
    Zheng X, Chen F, Zhang Q, Liu Y, You P, Sun S et al. Salivary exosomal PSMA7: a promising biomarker of inflammatory bowel disease. Protein Cell. 2017;8(9):686–95.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kong FL, Wang XP, Li YN, Wang HX. The role of exosomes derived from cerebrospinal fluid of spinal cord injury in neuron proliferation in vitro. Artif Cells Nanomed Biotechnol. 2018;46(1):200–5.CrossRefPubMedGoogle Scholar
  48. 48.
    Kosaka N, Izumi H, Sekine K, Ochiya T. microRNA as a new immune-regulatory agent in breast milk. Silence. 2010;1(1):7.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Koga Y, Yasunaga M, Moriya Y, Akasu T, Fujita S, Yamamoto S, et al. Exosomes can prevent RNase from degrading microRNA in feces. J Gastrointest Oncol. 2011;2(4):215–22.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Gopal SK, Greening DW, Rai A, Chen M, Xu R, Shafiq A, et al. Extracellular vesicles: their role in cancer biology and epithelial-mesenchymal transition. Biochem J. 2017;474(1):21–45.CrossRefPubMedGoogle Scholar
  51. 51.
    Rahman MA, Barger JF, Lovat F, Gao M, Otterson GA, Nana-Sinkam P. Lung cancer exosomes as drivers of epithelial mesenchymal transition. Oncotarget. 2016;7(34):54852–66.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Dhondt B, Rousseau Q, De Wever O, Hendrix A. Function of extracellular vesicles-associated miRNAs in metastasis. Cell Tissue Res. 2016;365(3):621–41.CrossRefPubMedGoogle Scholar
  53. 53.
    Le MT, Hamar P, Guo C, Basar E, Perdigao-Henriques R, Balaj L, et al. miR-200-containing extracellular vesicles promote breast cancer cell metastasis. J Clin Investig. 2014;124(12):5109–28.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 2014;25(4):501–15.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Fong MY, Zhou W, Liu L, Alontaga AY, Chandra M, Ashby J, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nature Cell Biol. 2015;17(2):183–94.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Bobrie A, Thery C. Exosomes and communication between tumours and the immune system: are all exosomes equal? Biochem Soc Trans. 2013;41(1):263–7.CrossRefPubMedGoogle Scholar
  57. 57.
    Bu N, Wu H, Zhang G, Zhan S, Zhang R, Sun H, et al. Exosomes from dendritic cells loaded with chaperone-rich cell lysates elicit a potent T cell immune response against intracranial glioma in mice. J Mol Neurosci MN. 2015;56(3):631–43.CrossRefPubMedGoogle Scholar
  58. 58.
    Marton A, Vizler C, Kusz E, Temesfoi V, Szathmary Z, Nagy K, et al. Melanoma cell-derived exosomes alter macrophage and dendritic cell functions in vitro. Immunol Lett. 2012;148(1):34–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Jia Y, Chen Y, Wang Q, Jayasinghe U, Luo X, Wei Q, et al. Exosomes: emerging biomarker in breast cancer. Oncotarget. 2017;8(25):41717–33.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Eichelser C, Stuckrath I, Muller V, Milde-Langosch K, Wikman H, Pantel K, et al. Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget. 2014;5(20):9650–63.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110(1):13–21.CrossRefPubMedGoogle Scholar
  62. 62.
    Choi PW, Ng S. The functions of MicroRNA-200 family in ovarian cancer: beyond epithelial-mesenchymal transition. Int J Mol Sci. 2017;18(6):1207.CrossRefPubMedCentralGoogle Scholar
  63. 63.
    Tang MK, Wong AS. Exosomes: emerging biomarkers and targets for ovarian cancer. Cancer Lett. 2015;367(1):26–33.CrossRefPubMedGoogle Scholar
  64. 64.
    Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH. Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer. 2009;10(1):42–6.CrossRefPubMedGoogle Scholar
  65. 65.
    Sun Y, Li L, Liu J, Wang L. Body fluids-derived exosomes: paving the novel road to lung cancer diagnosis and therapy. Anti Cancer Agents Med Chem. 2017;17(13):1734–40.Google Scholar
  66. 66.
    Cazzoli R, Buttitta F, Di Nicola M, Malatesta S, Marchetti A, Rom WN, et al. microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer. J Thorac Oncol. 2013;8(9):1156–62.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Rolfo C, Castiglia M, Hong D, Alessandro R, Mertens I, Baggerman G, et al. Liquid biopsies in lung cancer: the new ambrosia of researchers. Biochim Biophys Acta. 2014;1846(2):539–46.PubMedGoogle Scholar
  68. 68.
    Ye SB, Li ZL, Luo DH, Huang BJ, Chen YS, Zhang XS, et al. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget. 2014;5(14):5439–52.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Tanaka Y, Kamohara H, Kinoshita K, Kurashige J, Ishimoto T, Iwatsuki M, et al. Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma. Cancer. 2013;119(6):1159–67.CrossRefPubMedGoogle Scholar
  70. 70.
    Takeshita N, Hoshino I, Mori M, Akutsu Y, Hanari N, Yoneyama Y, et al. Serum microRNA expression profile: miR-1246 as a novel diagnostic and prognostic biomarker for oesophageal squamous cell carcinoma. Br J Cancer. 2013;108(3):644–52.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Que R, Ding G, Chen J. Cao L Analysis of serum exosomal microRNAs and clinicopathologic features of patients with pancreatic adenocarcinoma. World J Surg Oncol. 2013;11:219.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Liu J, Sun H, Wang X, Yu Q, Li S, Yu X, et al. Increased exosomal microRNA-21 and microRNA-146a levels in the cervicovaginal lavage specimens of patients with cervical cancer. Int J Mol Sci. 2014;15(1):758–73.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Ogata-Kawata H, Izumiya M, Kurioka D, Honma Y, Yamada Y, Furuta K, et al. Circulating exosomal microRNAs as biomarkers of colon cancer. PloS One. 2014;9(4):e92921.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Roth P, Wischhusen J, Happold C, Chandran PA, Hofer S, Eisele G, et al. A specific miRNA signature in the peripheral blood of glioblastoma patients. J Neurochem. 2011;118(3):449–57.CrossRefPubMedGoogle Scholar
  75. 75.
    Manterola L, Guruceaga E, Gallego Perez-Larraya J, Gonzalez-Huarriz M, Jauregui P, Tejada S, et al. A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool. Neuro-oncology. 2014;16(4):520–7.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Lasda E, Parker R. Circular RNAs co-precipitate with extracellular vesicles: a possible mechanism for circRNA clearance. PloS One. 2016;11(2):e0148407.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Alhasan AA. Izuogu OG Circular RNA enrichment in platelets is a signature of transcriptome degradation. Blood. 2016;127(9):e1–11.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Dou Y, Cha DJ, Franklin JL, Higginbotham JN, Jeppesen DK, Weaver AM, et al. Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Sci Rep. 2016;6:37982.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Federación de Sociedades Españolas de Oncología (FESEO) 2018

Authors and Affiliations

  1. 1.The First Clinical School of Nanjing Medical UniversityNanjingPeople’s Republic of China
  2. 2.State Key Laboratory of Reproductive MedicineNanjingPeople’s Republic of China
  3. 3.Center of Clinical Laboratory ScienceJiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer HospitalNanjingChina
  4. 4.Department of General SurgeryJiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer HospitalNanjingChina
  5. 5.Nanjing University of Chinese Medicine-Xianlin CampusNanjingPeople’s Republic of China
  6. 6.Department of General SurgeryJiangsu Province HospitalNanjing CityPeople’s Republic of China
  7. 7.Department of General SurgeryZhong Da Hospital Southeast UniversityNanjingPeople’s Republic of China
  8. 8.Jiangsu Province HospitalNanjingPeople’s Republic of China

Personalised recommendations