Advertisement

Indian Journal of Microbiology

, Volume 59, Issue 4, pp 391–400 | Cite as

Aligning Microbial Biodiversity for Valorization of Biowastes: Conception to Perception

  • Hemant J. PurohitEmail author
Review article
  • 44 Downloads

Abstract

Generation of biowastes is increasing rapidly and its uncontrolled, slow and persistent fermentation leads to the release of Green-house gases (GHGs) into the environment. Exploration and exploitation of microbial diversity for degrading biowastes can result in producing diverse range of bioactive molecules, which can act as a source of bioenergy, biopolymers, nutraceuticals and antimicrobials. The whole process is envisaged to manage biowastes, and reduce their pollution causing capacity, and lead to a sustainable society. A strategy has been proposed for: (1) producing bioactive molecules, and (2) achieving a zero-pollution emission by recycling of the GHGs through biological routes.

Keywords

Biodiversity Bioenergy Biopolymers Antipathogens Microbial biotechnology Genomics 

Notes

Acknowledgements

The author acknowledges the CSIR-NEERI KRC for plagiarism check CSIR-NEERI/KRC/2019/AUG/EBGD/1.

References

  1. 1.
    Daly M, Herendeen PS, Guralnick RP, Westneat MW, McDade L (2012) Systematics Agenda 2020: the mission evolves. Syst Biol 61:549–552.  https://doi.org/10.1093/sysbio/sys044 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Torsvik V, Goksoyr J, Daae FL (1990) High diversity in NA of soil bacteria. Appl Environ Microbiol 56:782–787PubMedPubMedCentralGoogle Scholar
  3. 3.
    Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390.  https://doi.org/10.1126/science.1112665 CrossRefPubMedGoogle Scholar
  4. 4.
    Rani A, Porwal S, Sharma R, Kapley A, Purohit HJ, Kalia VC (2008) Assessment of microbial diversity in effluent treatment plants by culture dependent and culture independent approaches. Bioresour Technol 99:7098–7107.  https://doi.org/10.1016/j.biortech.2008.01.003 CrossRefPubMedGoogle Scholar
  5. 5.
    Vitorino LC, Bessa LA (2018) Microbial diversity: the gap between the estimated and the known. Diversity 10:46.  https://doi.org/10.3390/d10020046 CrossRefGoogle Scholar
  6. 6.
    Ghasemi M, Jelodar NB, Modarresi M, Bagheri N, Jamali A (2016) Increase of chamazulene and α-bisabolol contents of the essential oil of German Chamomile (Matricaria chamomila L.) using salicylic acid treatments under normal and heat stress conditions. Foods 5:56.  https://doi.org/10.3390/foods5030056 CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Yang Y, Ma S, Wang X, Zheng X (2017) Modification and application of dietary fiber in foods. J Chem 2017:9340427.  https://doi.org/10.1155/2017/9340427 CrossRefGoogle Scholar
  8. 8.
    Tsouko E, Alexandri M, Fernandes KV, Freire DMG, Mallouchos A, Koutinas AA (2019) Extraction of phenolic compounds from palm oil processing residues and their application as antioxidants. Food Technol Biotechnol 57:29–38.  https://doi.org/10.17113/ftb.57.01.19.5784 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Waldron K (2009) Handbook of waste management and co-product recovery in food processing. Woodhead Publishing, Cambridge, p 2009CrossRefGoogle Scholar
  10. 10.
    Paritosh K, Kushwaha SK, Yadav M, Pareek N, Chawade A, Vivekanand V (2017) Food waste to energy: an overview of sustainable approaches for food waste management and nutrient recycling. Biomed Res Int 2017:2370927.  https://doi.org/10.1155/2017/2370927 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dahiya S, Kumar AN, Sravan JS, Chatterjee S, Sarkar O, Venkata Mohan S (2018) Food waste biorefinery: sustainable strategy for circular bioeconomy. Bioresour Technol 248:2–12.  https://doi.org/10.1016/j.biortech.2017.07.176 CrossRefPubMedGoogle Scholar
  12. 12.
    Raizada N, Sonakya V, Anand V, Kalia VC (2002) Waste management and production of future fuels. J Sci Ind Res 61:184–207Google Scholar
  13. 13.
    Kalia VC (2007) Microbial treatment of domestic and industrial wastes for bioenergy production. Appl Microbiol (e-Book). National Science Digital Library NISCAIR, New Delhi, India. http://nsdl.niscair.res.in/bitstream/123456789/650/1/DomesticWaste.pdf. Accessed 10 Oct 2019
  14. 14.
    Kalia VC, Purohit HJ (2008) Microbial diversity and genomics in aid of bioenergy. J Ind Microbiol Biotechnol 35:403–419.  https://doi.org/10.1007/s10295-007-0300-y CrossRefPubMedGoogle Scholar
  15. 15.
    Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC (2015) Biotechnology in aid of biodiesel industry effluent (glycerol): biofuels and bioplastics. In: Kalia VC (ed) Microbial factories. Springer, New Delhi, pp 105–119.  https://doi.org/10.1007/978-81-322-2598-0 CrossRefGoogle Scholar
  16. 16.
    Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC (2015) Biodiesel industry waste: a potential source of bioenergy and biopolymers. Indian J Microbiol 55:1–7.  https://doi.org/10.1007/s12088-014-0509-1 CrossRefGoogle Scholar
  17. 17.
    Kondaveeti S, Mohanakrishna G, Pagolu R, Kim IW, Kalia VC, Lee JK (2019) Bioelectrogenesis from raw algal biomass through microbial fuel cells: effect of acetate as co-substrate. Indian J Microbiol 59:22–26.  https://doi.org/10.1007/s12088-018-0769-2 CrossRefPubMedGoogle Scholar
  18. 18.
    Kalia VC, Raizada N, Sonakya V (2000) Bioplastics. J Sci Ind Res 59:433–445Google Scholar
  19. 19.
    Reddy CSK, Ghai R, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146.  https://doi.org/10.1016/S0960-8524(02)00212-2 CrossRefPubMedGoogle Scholar
  20. 20.
    Kalia VC (2015) Microbes: factories for bioproducts. In: Kalia VC (ed) Microbial factories. Springer, New Delhi, pp 1–5.  https://doi.org/10.1007/978-81-322-2598-0_1 CrossRefGoogle Scholar
  21. 21.
    Kalia VC (2017) The dawn of the era of bioactive compounds. In: Kalia VC, Saini AK (eds) Metabolic engineering for bioactive compounds. Springer, Singapore, pp 3–10.  https://doi.org/10.1007/978-981-10-5511-9_1 CrossRefGoogle Scholar
  22. 22.
    Kalia VC, Prakash J, Koul S (2016) Biorefinery for glycerol rich biodiesel industry waste. Indian J Microbiol 56:113–125.  https://doi.org/10.1007/s12088-016-0583-7 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kalia VC, Ray S, Patel SKSP, Singh M, Singh GP (2019) Applications of polyhydroxyalkanoates and their metabolites as drug carriers. In: Kalia VC (ed) Biotechnological applications of polyhydroxyalkanoates. Springer, Singapore, pp 35–48.  https://doi.org/10.1007/978-981-13-3759-8_3 CrossRefGoogle Scholar
  24. 24.
    Kalia VC, Ray S, Patel SKSP, Singh M, Singh GP (2019) The dawn of novel biotechnological applications of polyhydroxyalkanoates. In: Kalia VC (ed) Biotechnological applications of polyhydroxyalkanoates. Springer, Singapore, pp 1–11.  https://doi.org/10.1007/978-981-13-3759-8_1 CrossRefGoogle Scholar
  25. 25.
    Kalia VC, Prakash J, Koul S, Ray S (2018) Quorum sensing and its inhibition: biotechnological applications. In: Kalia VC (ed) Quorum sensing and its biotechnological applications. Springer, Singapore, pp 3–16.  https://doi.org/10.1007/978-981-13-0848-2_1 CrossRefGoogle Scholar
  26. 26.
    Kalia VC, Prakash J, Ray S, Koul S (2018) Application of microbial quorum sensing systems for bioremediation of wastewaters. In: Kalia VC (ed) Quorum sensing and its biotechnological applications. Springer, Singapore, pp 87–97.  https://doi.org/10.1007/978-981-13-0848-2_6 CrossRefGoogle Scholar
  27. 27.
    Koul S, Kalia VC (2017) Multiplicity of quorum quenching enzymes: a potential mechanism to limit quorum sensing bacterial population. Indian J Microbiol 57:100–108.  https://doi.org/10.1007/s12088-016-0633-1 CrossRefPubMedGoogle Scholar
  28. 28.
    Koul S, Prakash J, Mishra A, Kalia VC (2016) Potential emergence of multi-quorum sensing inhibitor resistant (MQSIR) bacteria. Indian J Microbiol 56:1–18.  https://doi.org/10.1007/s12088-015-0558-0 CrossRefPubMedGoogle Scholar
  29. 29.
    Kumar R, Koul S, Kalia VC (2017) Exploiting bacterial genomes to develop biomarkers for identification. In: Arora A, Sajid A, Kalia VC (eds) Drug resistance in bacteria, fungi, malaria, and cancer. Springer, Cham, pp 357–370.  https://doi.org/10.1007/978-3-319-48683-3_16 CrossRefGoogle Scholar
  30. 30.
    Patel SKS, Ray S, Prakash J, Wee JH, Kim SY, Lee JK, Kalia VC (2019) Co-digestion of biowastes to enhance biological hydrogen process by defined mixed bacterial cultures. Indian J Microbiol 59:154–160.  https://doi.org/10.1007/s12088-018-00777-8 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Patel SKS, Sandeep K, Singh M, Singh GP, Lee J-K, Bhatia SK, Kalia VC (2019) Biotechnological application of polyhydroxyalkanoates and their composites as anti-microbials agents. In: Kalia VC (ed) Biotechnological applications of polyhydroxyalkanoates. Springer, Singapore, pp 207–225.  https://doi.org/10.1007/978-981-13-3759-8_8 CrossRefGoogle Scholar
  32. 32.
    Prakash J, Sharma R, Ray S, Koul S, Kalia VC (2018) Wastewater: a potential bioenergy resource. Indian J Microbiol 58:127–137.  https://doi.org/10.1007/s12088-017-0703-z CrossRefPubMedGoogle Scholar
  33. 33.
    Prakash J, Kalia VC (2018) Application of quorum sensing systems in production of green fuels. In: Kalia VC (ed) Quorum sensing and its biotechnological applications. Springer, Singapore, pp 155–166.  https://doi.org/10.1007/978-981-13-0848-2_10 CrossRefGoogle Scholar
  34. 34.
    Ray S, Kalia VC (2017) Biological significance of degradation of polyhydroxyalkanoates. In: Kalia VC, Kumar P (eds) Microbial applications, vol 1. Springer, Cham, pp 125–139.  https://doi.org/10.1007/978-3-319-52666-9_5 CrossRefGoogle Scholar
  35. 35.
    Ray S, Kalia VC (2017) Biomedical applications of polyhydroxyalkanoates. Indian J Microbiol 57:261–269.  https://doi.org/10.1007/s12088-017-0651-7 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ray S, Kalia VC (2017) Microbial cometabolism and polyhydroxyalkanoate co-polymers. Indian J Microbiol 57:39–47.  https://doi.org/10.1007/s12088-016-0622-4 CrossRefPubMedGoogle Scholar
  37. 37.
    Ray S, Patel SKSP, Singh M, Singh GP, Kalia VC (2019) Exploiting polyhydroxyalkanoates for tissue engineering. In: Kalia VC (ed) Biotechnological applications of polyhydroxyalkanoates. Springer, Singapore, pp 271–282.  https://doi.org/10.1007/978-981-13-3759-8_10 CrossRefGoogle Scholar
  38. 38.
    Saini AK, Kalia VC (2017) Potential challenges and alternative approaches in metabolic engineering of bioactive compounds in industrial setup. In: Kalia VC, Saini AK (eds) Metabolic engineering for bioactive compounds. Springer, Singapore, pp 405–412.  https://doi.org/10.1007/978-981-10-5511-9_19 CrossRefGoogle Scholar
  39. 39.
    Porwal S, Kumar T, Lal S, Rani A, Kumar S, Cheema S, Purohit HJ, Sharma R, Patel SKS, Kalia VC (2008) Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresour Technol 99:5444–5451.  https://doi.org/10.1016/j.biortech.2007.11.011 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Patel SKS, Purohit HJ, Kalia VC (2010) Dark fermentative hydrogen production by defined mixed microbial cultures immobilized on ligno-cellulosic waste materials. Int J Hydrog Energy 35:10674–10681.  https://doi.org/10.1016/j.ijhydene.2010.03.025 CrossRefGoogle Scholar
  41. 41.
    Patel SKS, Singh M, Kalia VC (2011) Hydrogen and polyhydroxybutyrate producing abilities of Bacillus spp. from glucose in two stage system. Indian J Microbiol 51:418–423.  https://doi.org/10.1007/s12088-011-0236-9 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Patel SKS, Singh M, Kumar P, Purohit HJ, Kalia VC (2012) Exploitation of defined bacterial cultures for production of hydrogen and polyhydroxybutyrate from pea-shells. Biomass Bioenergy 36:218–225.  https://doi.org/10.1016/j.biombioe.2011.10.027 CrossRefGoogle Scholar
  43. 43.
    Patel SKS, Kumar P, Mehariya S, Purohit HJ, Lee JK, Kalia VC (2014) Enhancement in hydrogen production by co-cultures of Bacillus and Enterobacter. Int J Hydrog Energy 39:14663–14668.  https://doi.org/10.1016/j.ijhydene.2014.07.084 CrossRefGoogle Scholar
  44. 44.
    Patel SKS, Kumar P, Singh S, Lee JK, Kalia VC (2015) Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol 176:136–141.  https://doi.org/10.1016/j.biortech.2014.11.029 CrossRefPubMedGoogle Scholar
  45. 45.
    Patel SKS, Lee JK, Kalia VC (2016) Integrative approach for producing hydrogen and polyhydroxyalkanoate from mixed wastes of biological origin. Indian J Microbiol 56:293–300.  https://doi.org/10.1007/s12088-016-0595-3 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Prakash J, Gupta RK, Priyanka XX, Kalia VC (2017) Bioprocessing of biodiesel industry effluent by immobilized bacteria to produce value-added products. Appl Biochem Biotechnol 185:179–190.  https://doi.org/10.1007/s12010-017-2637-7 CrossRefPubMedGoogle Scholar
  47. 47.
    Prakash J, Sharma R, Patel SKS, Kim IW, Kalia VC (2018) Bio-hydrogen production by co-digestion of domestic wastewater and biodiesel industry effluent. PLoS ONE 13:e0199059.  https://doi.org/10.1371/journal.pone.0199059 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kumar T, Singh M, Purohit HJ, Kalia VC (2009) Potential of Bacillus sp. to produce polyhydroxybutyrate from biowaste. J Appl Microbiol 106:2017–2023.  https://doi.org/10.1111/j.1365-2672.2009.04160.x CrossRefPubMedGoogle Scholar
  49. 49.
    Singh M, Kumar P, Patel SKS, Kalia VC (2013) Production of polyhydroxyalkanoate co-polymer by Bacillus thuringiensis. Indian J Microbiol 53:77–83.  https://doi.org/10.1007/s12088-012-0294-7 CrossRefPubMedGoogle Scholar
  50. 50.
    Kumar P, Singh M, Mehariya S, Patel SKS, Lee JK, Kalia VC (2014) Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate. Indian J Microbiol 54:151–157.  https://doi.org/10.1007/s12088-014-0457-9 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kumar P, Ray S, Patel SKS, Lee JK, Kalia VC (2015) Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. Int J Biol Macromol 78:9–16.  https://doi.org/10.1016/j.ijbiomac.2015.03.046 CrossRefPubMedGoogle Scholar
  52. 52.
    Kumar P, Sharma R, Ray S, Mehariya S, Patel SKS, Lee J-K, Kalia VC (2015) Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Bioresour Technol 182:383–388.  https://doi.org/10.1016/j.biortech.2015.01.138 CrossRefPubMedGoogle Scholar
  53. 53.
    Kumar P, Ray S, Kalia VC (2016) Production of co-polymers of polyhydroxyalkanoates by regulating the hydrolysis of biowastes. Bioresour Technol 200:413–419.  https://doi.org/10.1016/j.biortech.2015.10.045 CrossRefPubMedGoogle Scholar
  54. 54.
    Ray S, Kalia VC (2017) Co-metabolism of substrates by Bacillus thuringiensis regulates polyhydroxyalkanoates co-polymer compositions. Bioresour Technol 224:743–747.  https://doi.org/10.1016/j.biortech.2016.11.089 CrossRefPubMedGoogle Scholar
  55. 55.
    Ray S, Kalia VC (2017) Polyhydroxyalkanoate production and degradation patterns in Bacillus Species. Indian J Microbiol 57:387–392.  https://doi.org/10.1007/s12088-017-0676-y CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ray S, Sharma R, Kalia VC (2018) Co-utilization of crude glycerol and biowastes for producing polyhydroxyalkanoates. Indian J Microbiol 58:33–38.  https://doi.org/10.1007/s12088-017-0702-0 CrossRefPubMedGoogle Scholar
  57. 57.
    Kalia VC, Kumar A, Jain SR, Joshi AP (1992) Methanogenesis of dumping wheat grains and recycling of the effluent. Resour Conserv Recycl 6:161–166.  https://doi.org/10.1016/0921-3449(92)90042-Z CrossRefGoogle Scholar
  58. 58.
    Kalia VC, Kumar A, Jain SR, Joshi AP (1992) Biomethanation of plant materials. Bioresour Technol 41:209–212.  https://doi.org/10.1016/0960-8524(92)90003-G CrossRefGoogle Scholar
  59. 59.
    Kalia VC, Joshi AP (1995) Conversion of waste biomass (pea-shells) into hydrogen and methane through anaerobic digestion. Bioresour Technol 53:165–168.  https://doi.org/10.1016/0960-8524(95)00077-R CrossRefGoogle Scholar
  60. 60.
    Kalia VC, Sonakya V, Raizada N (2000) Anaerobic digestion of banana stem waste. Bioresour Technol 73:191–193.  https://doi.org/10.1016/S0960-8524(99)00172-8 CrossRefGoogle Scholar
  61. 61.
    Sonakya V, Raizada N, Kalia VC (2001) Microbial and enzymatic improvement of anaerobic digestion of waste biomass. Biotechnol Lett 23:1463–1466.  https://doi.org/10.1023/A:1011664912970 CrossRefGoogle Scholar
  62. 62.
    Kumar P, Pant DC, Mehariya S, Sharma R, Kansal A, Kalia VC (2014) Ecobiotechnological strategy to enhance efficiency of bioconversion of wastes into hydrogen and methane. Indian J Microbiol 54:262–267.  https://doi.org/10.1007/s12088-014-0467-7 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Kalia VC, Prakash J, Koul S, Ray S (2017) Simple and rapid method for detecting biofilm forming bacteria. Indian J Microbiol 57:109–111.  https://doi.org/10.1007/s12088-016-0616-2 CrossRefPubMedGoogle Scholar
  64. 64.
    Kalia VC, Jain SR, Kumar A, Joshi AP (1994) Fermentation of biowaste to H2 by Bacillus licheniformis. World J Microbiol Biotechnol 10:224–227.  https://doi.org/10.1007/BF00360893 CrossRefPubMedGoogle Scholar
  65. 65.
    Singh M, Patel SKS, Kalia VC (2009) Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb Cell Factories 8:38.  https://doi.org/10.1186/1475-2859-8-38 CrossRefGoogle Scholar
  66. 66.
    Singh M, Kumar P, Ray S, Kalia VC (2015) Challenges and opportunities for customizing polyhydroxyalkanoates. Indian J Microbiol 55:235–249.  https://doi.org/10.1007/s12088-015-0528-6 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol 37:121–140.  https://doi.org/10.3109/1040841X.2010.532479 CrossRefPubMedGoogle Scholar
  68. 68.
    Kalia VC, Raju SC, Purohit HJ (2011) Genomic analysis reveals versatile organisms for quorum quenching enzymes: acyl-homoserine lactone-acylase and-lactonase. Open Microbiol J 5:1–11.  https://doi.org/10.2174/1874285801105010001 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245.  https://doi.org/10.1016/j.biotechadv.2012.10.004 CrossRefPubMedGoogle Scholar
  70. 70.
    Kalia VC (2014) In search of versatile organisms for quorum sensing inhibitors: acyl homoserine lactones (AHL)-acylase and AHL-lactonase. FEMS Microbiol Lett 359:143.  https://doi.org/10.1111/1574-6968.1258512 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Kalia VC (2014) Microbes, antimicrobials and resistance: the battle goes on. Indian J Microbiol 54:1–2.  https://doi.org/10.1007/s12088-013-0443-7 CrossRefPubMedGoogle Scholar
  72. 72.
    Kalia VC (2015) Microbes: the most friendly beings? In: Kalia VC (ed) Quorum sensing vs quorum quenching: a battle with no end in sight. Springer, New Delhi, pp 1–5.  https://doi.org/10.1007/978-81-322-1982-8_1 CrossRefGoogle Scholar
  73. 73.
    Kalia VC, Kumar P (2015) Potential applications of quorum sensing inhibitors in diverse fields. In: Kalia VC (ed) Quorum sensing vs quorum quenching: a battle with no end in sight. Springer, New Delhi, pp 359–370.  https://doi.org/10.1007/978-81-322-1982-8_29 CrossRefGoogle Scholar
  74. 74.
    Kalia VC, Kumar P (2015) The battle: quorum-sensing inhibitors versus evolution of bacterial resistance. In: Kalia VC (ed) Quorum sensing vs quorum quenching: a battle with no end in sight. Springer, New Delhi, pp 385–391.  https://doi.org/10.1007/978-81-322-1982-8_31 CrossRefGoogle Scholar
  75. 75.
    Kalia VC, Wood TK, Kumar P (2014) Evolution of resistance to quorum-sensing inhibitors. Microb Ecol 68:13–23.  https://doi.org/10.1007/s00248-013-0316-y CrossRefPubMedGoogle Scholar
  76. 76.
    Kalia VC, Kumar P, Pandian SK, Sharma P (2015) Biofouling control by quorum quenching. In: Kim S-K (ed) Springer handbook of marine biotechnology. Springer, Berlin, pp 431–440.  https://doi.org/10.1007/978-3-642-53971-8_15 CrossRefGoogle Scholar
  77. 77.
    Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561.  https://doi.org/10.1016/j.biotechadv.2013.08.007 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Kumar P, Koul S, Patel SK, Lee J-K, Kalia VC (2015) Heterologous expression of quorum sensing inhibitory genes in diverse organisms. In: Kalia VC (ed) Quorum sensing vs quorum quenching: a battle with no end in sight. Springer, New Delhi, pp 343–356.  https://doi.org/10.1007/978-81-322-1982-8_28 CrossRefGoogle Scholar
  79. 79.
    Kalia VC, Patel SKS, Kang YC, Lee J-K (2019) Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol Adv 37:68–90.  https://doi.org/10.1016/j.biotechadv.2018.11.006 CrossRefPubMedGoogle Scholar
  80. 80.
    Huma N, Shankar P, Kushwah J, Bhushan A, Joshi J, Mukherjee T, Raju SC, Purohit HJ, Kalia VC (2011) Diversity and polymorphism in AHL-lactonase gene (aiiA) of Bacillus. J Microbiol Biotechnol 21:1001–1011.  https://doi.org/10.4014/jmb.1105.05056 CrossRefPubMedGoogle Scholar
  81. 81.
    Kalia VC, Lal S, Ghai R, Mandal M, Chauhan A (2003) Mining genomic databases to identify novel hydrogen producers. Trends Biotechnol 21:152–156.  https://doi.org/10.1016/S0167-7799(03)00028-3 CrossRefPubMedGoogle Scholar
  82. 82.
    Lal S, Raje DV, Cheema S, Kapley A, Purohit HJ, Kalia VC (2015) Investigating the phylogeny of hydrogen metabolism by comparative genomics: horizontal gene transfer. In: Kalia V (ed) Microbial factories. Springer, New Delhi, pp 317–345.  https://doi.org/10.1007/978-81-322-2595-9_20 CrossRefGoogle Scholar
  83. 83.
    Kalia VC, Chauhan A, Bhattacharyya G (2003) Genomic databases yield novel bioplastic producers. Nat Biotechnol 21:845–846.  https://doi.org/10.1038/nbt0803-845 CrossRefPubMedGoogle Scholar
  84. 84.
    Kalia VC, Lal S, Cheema S (2007) Insight into the phylogeny of polyhydroxyalkanoate biosynthesis: horizontal gene transfer. Gene 389:19–26.  https://doi.org/10.1016/j.gene.2006.09.010 CrossRefPubMedGoogle Scholar
  85. 85.
    Lal S, Cheema S, Kalia VC (2008) Phylogeny vs genome reshuffling: horizontal gene transfer. Indian J Microbiol 48:228–242.  https://doi.org/10.1007/s12088-008-0034-1 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Kalia VC, Lal S, Chauhan A, Bhattacharyya G (2015) In silico reconstitution of novel routes for microbial plastic. In: Kalia V (ed) Microbial factories. Springer, New Delhi, pp 299–315.  https://doi.org/10.1007/978-81-322-2595-9_19 CrossRefGoogle Scholar
  87. 87.
    Kalia VC, Rani A, Lal S, Cheema S, Raut CP (2007) Combing databases reveals potential antibiotic producers. Expert Opin Drug Discov 2:211–224.  https://doi.org/10.1517/17460441.2.2.211 CrossRefPubMedGoogle Scholar
  88. 88.
    Purohit HJ, Cheema S, Lal S, Raut CP, Kalia VC (2007) In search of drug targets for Mycobacterium tuberculosis. Infect Disord Drug Targets 7:245–250.  https://doi.org/10.2174/187152607782110068 CrossRefPubMedGoogle Scholar
  89. 89.
    Kalia VC, Koul S, Ray S, Prakash S (2018) Targeting quorum sensing mediated Staphylococcus aureus biofilms. In: Kalia VC (ed) Biotechnological applications of quorum sensing inhibitors. Springer, Singapore, pp 23–32.  https://doi.org/10.1007/978-981-10-9026-4_2 CrossRefGoogle Scholar
  90. 90.
    Porwal S, Lal S, Cheema S, Kalia VC (2009) Phylogeny in aid of the present and novel microbial lineages: diversity in Bacillus. PLoS ONE 4:e4438.  https://doi.org/10.1371/journal.pone.0004438 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Kalia VC, Mukherjee T, Bhushan A, Joshi J, Shankar P, Huma N (2011) Analysis of the unexplored features of rrs (16S rDNA) of the genus Clostridium. BMC Genom 12:18.  https://doi.org/10.1186/1471-2164-12-18 CrossRefGoogle Scholar
  92. 92.
    Bhushan A, Joshi J, Shankar P, Kushwah J, Raju SC, Purohit HJ, Kalia VC (2013) Development of genomic tools for the identification of certain Pseudomonas up to species level. Indian J Microbiol 53:253–263.  https://doi.org/10.1007/s12088-013-0412-1 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Bhushan A, Mukherjee T, Joshi J, Shankar P, Kalia VC (2015) Insights into the origin of Clostridium botulinum strains: evolution of distinct restriction endonuclease sites in rrs (16S rRNA gene). Indian J Microbiol 55:140–150.  https://doi.org/10.1007/s12088-015-0514-z CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Kalia VC (2015) Let’s explore the latent features of genes to identify bacteria. J Mol Genet Med 9:e105.  https://doi.org/10.4172/1747-0862.1000E105 CrossRefGoogle Scholar
  95. 95.
    Kalia VC, Kumar P (2015) Genome wide search for biomarkers to diagnose Yersinia infections. Indian J Microbiol 55:366–374.  https://doi.org/10.1007/s12088-015-0552-6 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Kalia VC, Kumar P, Kumar R, Mishra A, Koul S (2015) Genome wide analysis for rapid identification of Vibrio species. Indian J Microbiol 55:375–383.  https://doi.org/10.1007/s12088-015-0553-5 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Kekre A, Bhushan A, Kumar P, Kalia VC (2015) Genome wide analysis for searching novel markers to rapidly identify Clostridium strains. Indian J Microbiol 55:250–257.  https://doi.org/10.1007/s12088-015-0535-7 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Koul S, Kumar P, Kalia VC (2015) A unique genome wide approach to search novel markers for rapid identification of bacterial pathogens. J Mol Genet Med 9:194.  https://doi.org/10.4172/1747-0862.1000194 CrossRefGoogle Scholar
  99. 99.
    Kalia VC, Kumar R, Kumar P, Koul S (2016) A genome-wide profiling strategy as an aid for searching unique identification biomarkers for Streptococcus. Indian J Microbiol 56:46–58.  https://doi.org/10.1007/s12088-015-0561-5 CrossRefPubMedGoogle Scholar
  100. 100.
    Koul S, Kalia VC (2016) Comparative genomics reveals biomarkers to identify Lactobacillus species. Indian J Microbiol 56:253–263.  https://doi.org/10.1007/s12088-016-0605-5 CrossRefGoogle Scholar
  101. 101.
    Kumar R, Koul S, Kumar P, Kalia VC (2016) Searching biomarkers in the sequenced genomes of Staphylococcus for their rapid identification. Indian J Microbiol 56:64–71.  https://doi.org/10.1007/s12088-016-0565-9 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Patel SKS, Kalia VC, Choi JH, Haw JR, Kim IW, Lee JK (2014) Immobilization of laccase on SiO2 nanocarriers improves its stability and reusability. J Microbiol Biotechnol 24:639–647.  https://doi.org/10.4014/jmb.1401.01025 CrossRefPubMedGoogle Scholar
  103. 103.
    Otari SV, Patel SKS, Jeong JH, Lee JH, Lee J-K (2016) A green chemistry approach for synthesizing thermostable antimicrobial peptide-coated gold nanoparticles immobilized in an alginate biohydrogel. RSC Adv 6:86808–86816.  https://doi.org/10.1039/c6ra1488k CrossRefGoogle Scholar
  104. 104.
    Patel SKS, Choi S-H, Kang Y-C, Lee J-K (2016) Large-scale aerosol-assisted synthesis of biofriendly Fe2O3 yolk-shell particles: a promising support for enzyme immobilization. Nanoscale 8:6728–6738.  https://doi.org/10.1039/c6nr00346j CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Patel SKS, Mardina P, Kim D, Kim S-Y, Kalia VC, Kim I-W, Lee J-K (2016) Improvement in methanol production by regulating the composition of synthetic gas mixture and raw biogas. Bioresour Technol 218:202–208.  https://doi.org/10.1016/j.biortech.2016.06.065 CrossRefPubMedGoogle Scholar
  106. 106.
    Patel SKS, Selvaraj C, Mardina P, Jeong J-H, Kalia VC, Kang Y-C, Lee J-K (2016) Enhancement of methanol production from synthetic gas mixture by Methylosinus sporium through covalent immobilization. Appl Energy 171:383–391.  https://doi.org/10.1016/j.apenergy.2016.03.022 CrossRefGoogle Scholar
  107. 107.
    Patel SKS, Choi SH, Kang YC, Lee J-K (2017) Eco-friendly composite of Fe3O4-reduced graphene oxide particles for efficient enzyme immobilization. ACS Appl Mater Interfaces 9:2213–2222.  https://doi.org/10.1021/acsami.6b05165 CrossRefPubMedGoogle Scholar
  108. 108.
    Patel SKS, Singh R, Kumar A, Jeong J-H, Jeong S-H, Kalia VC, Kim I-W, Lee J-K (2017) Biological methanol production by immobilized Methylocella tundrae using simulated biohythane as a feed. Bioresour Technol 241:922–927.  https://doi.org/10.1016/j.biortech.2017.05.160 CrossRefPubMedGoogle Scholar
  109. 109.
    Kumar A, Kim I-W, Patel SKS, Lee J-K (2018) Synthesis of protein-inorganic nanohybrids with improved catalytic properties using Co3(PO4)2. Indian J Microbiol 58:100–104.  https://doi.org/10.1007/s12088-017-0700-2 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Patel SKS, Anwar MZ, Kumar A, Otari SV, Pagolu RT, Kim S-Y, Kim I-W, Lee J-K (2018) Fe2O3 yolk-shel particle-based laccase biosensor for efficient detection of 2,6-dimethoxyphenol. Biochem Eng J 132:1–8.  https://doi.org/10.1016/j.bej.2017.12.013 CrossRefGoogle Scholar
  111. 111.
    Patel SKS, Kumar V, Mardina P, Li J, Lestari R, Kalia VC, Lee J-K (2018) Methanol production from simulated biogas mixtures by co-immobilized Methylomonas methanica and Methylocella tundrae. Bioresour Technol 263:25–32.  https://doi.org/10.1016/j.biortech.2018.04.096 CrossRefPubMedGoogle Scholar
  112. 112.
    Patel SKS, Kondaveeti S, Otari SV, Pagolu RT, Jeong SH, Kim SC, Cho BK, Kang YC, Lee J-K (2018) Repeated batch methanol production from a simulated biogas mixture using immobilized Methylocystis bryophila. Energy 145:477–485.  https://doi.org/10.1016/j.energy.2017.12.142 CrossRefGoogle Scholar
  113. 113.
    Patel SKS, Lee JK, Kalia VC (2018) Nanoparticles in biological hydrogen production: an overview. Indian J Microbiol 58:8–18.  https://doi.org/10.1007/s12088-017-0678-9 CrossRefPubMedGoogle Scholar
  114. 114.
    Patel SKS, Otari SV, Li J, Kim DR, Kim SC, Cho B-K, Kalia VC, Kang YC, Lee J-K (2018) Synthesis of cross-linked protein-metal hybrid nanoflowers and its application in repeated batch decolorization of synthetic dyes. J Hazard Mater 347:442–450.  https://doi.org/10.1016/j.jhazmat.2018.01.003 CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Gao H, Li J, Sivakumar D, Kim TS, Patel SKS, Kalia VC, Kim IW, Zhang YW, Lee JK (2019) NADH oxidase from Lactobacillus reuteri: a versatile enzyme for oxidized cofactor regeneration. Int J Biol Macromol 123:629–636.  https://doi.org/10.1016/j.ijbiomac.2018.11.096 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Kumar A, Park GD, Patel SKS, Kondaveeti S, Otari S, Anwar MZ, Kalia VC, Singh Y, Kim SC, Cho B-K, Sohn J-H, Kim D-R, Kang YC, Lee J-K (2019) SiO2 microparticles with carbon nanotube-derived mesopores as an efficient support for enzyme immobilization. Chem Eng J 359:1252–1264.  https://doi.org/10.1016/j.cej.2018.11.052 CrossRefGoogle Scholar
  117. 117.
    Otari SV, Patel SKS, Kalia VC, Kim IW, Lee J-K (2019) Antimicrobial activity of biosynthesized silver nanoparticles decorated silica nanoparticles. Indian J Microbiol 59:379–382.  https://doi.org/10.1007/s12088-019-00812-2 CrossRefPubMedGoogle Scholar
  118. 118.
    Otari SV, Patel SKS, Kim SY, Haw JR, Kalia VC, Kim IW, Lee JK (2019) Copper ferrite magnetic nanoparticles for the immobilization of enzyme. Indian J Microbiol 59:105–108.  https://doi.org/10.1007/s12088-018-0768-3 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Otari SV, Shinde VV, Hui G, Patel SKS, Kalia VC, Kim IW, Lee JK (2019) Biomolecule-entrapped SiO2 nanoparticles for ultrafast green synthesis of silver nanoparticle-decorated hybrid nanostructures as effective catalysts. Ceram Int 45:5876–5882.  https://doi.org/10.1016/j.ceramiint.2018.12.054 CrossRefGoogle Scholar
  120. 120.
    Patel SKS, Choi H, Lee J-K (2019) Multi-metal based inorganic-protein hybrid system for enzyme immobilization. ACS Sustain Chem Eng 7:13633–13638.  https://doi.org/10.1021/acscuschemeng.9b02583 CrossRefGoogle Scholar
  121. 121.
    Patel SKS, Gupta RK, Kumar V, Mardina P, Lestari R, Kalia VC, Choi M-S, Lee J-K (2019) Influence of metal ions on the immobilization of β-glucosidase through protein-inorganic hybrids. Indian J Microbiol 59:370–374.  https://doi.org/10.1007/s12088-019-00796-z CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Patel SKS, Jeon MS, Gupta RK, Jeon Y, Kalia VC, Kim SC, Cho B-K, Kim DR, Lee J-K (2019) Hierarchical macro-porous particles for efficient whole-cell immobilization: application in bioconversion of greenhouse gases to methanol. ACS Appl Mater Interfaces 11:18968–18977.  https://doi.org/10.1021/acsami.9b03420 CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Patel SKS, Kim JH, Kalia VC, Lee JK (2019) Antimicrobial activity of amino-derivatized cationic polysaccharides. Indian J Microbiol 59:96–99.  https://doi.org/10.1007/s12088-018-0764-7 CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Patel SKS, Lee JK, Kalia VC (2018) Beyond the theoretical yields of dark-fermentative biohydrogen. Indian J Microbiol 58:529–530.  https://doi.org/10.1007/s12088-018-0759-4 CrossRefPubMedGoogle Scholar
  125. 125.
    Patel SKS, Kalia VC (2013) Integrative biological hydrogen production: an overview. Indian J Microbiol 53:3–10.  https://doi.org/10.1007/s12088-012-0287-6 CrossRefPubMedGoogle Scholar
  126. 126.
    Patel SKS, Kumar P, Kalia VC (2012) Enhancing biological hydrogen production through complementary microbial metabolisms. Int J Hydrog Energy 37:10590–10603.  https://doi.org/10.1016/j.ijhydene.2012.04.045 CrossRefGoogle Scholar
  127. 127.
    Patel SKS, Kumar P, Singh S, Lee JK, Kalia VC (2015) Integrative approach for hydrogen and polyhydroxybutyrate production. In: Kalia VC (ed) Microbial factories. Springer, New Delhi, pp 73–85.  https://doi.org/10.1007/978-81-322-2598-0_5 CrossRefGoogle Scholar
  128. 128.
    Patel SKS, Lee JK, Kalia VC (2017) Dark-fermentative biological hydrogen production from mixed biowastes using defined mixed cultures. Indian J Microbiol 57:171–176.  https://doi.org/10.1007/s12088-017-0643-7 CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Venkata Mohan S, Mohanakrishna G, Reddy S, Raju BD, Rao RKS, Sarma PN (2008) Self-immobilization of acidogenic mixed consortia on mesoporous material (SBA-15) and activated carbon to enhance fermentative hydrogen production. Int J Hydrog Energy 33:6133–6142.  https://doi.org/10.1016/j.ijhydene.2008.07.096 CrossRefGoogle Scholar
  130. 130.
    Nath D, Manhar AK, Gupta K, Saikia D, Das SK, Mandal M (2015) Phytosynthesized iron nanoparticles: effects on fermentative hydrogen production by Enterobacter cloacae DH-89. Bull Mater Sci 38:1533–1538.  https://doi.org/10.1007/s12034-015-0974-0 CrossRefGoogle Scholar
  131. 131.
    Mardina P, Li J, Patel SKS, Kim I-W, Lee J-K, Selvaraj C (2016) Potential of immobilized whole-cell Methylocella tundrae as a biocatalyst for methanol production from methane. J Microbiol Biotechnol 26:1234–1241.  https://doi.org/10.4014/jmb.1602.02074 CrossRefPubMedGoogle Scholar
  132. 132.
    Patel SKS, Jeong J-H, Mehariya S, Otari SV, Madan B, Haw JR, Lee J-K, Zhang L, Kim I-W (2016) Production of methanol from methane by encapsulated Methylosinus sporium. J Microbiol Biotechnol 26:2098–2105.  https://doi.org/10.4014/jmb.1608.08053 CrossRefPubMedGoogle Scholar
  133. 133.
    Patel SKS, Mardina P, Kim S-Y, Lee J-K, Kim I-W (2016) Biological methanol production by a type II methanotroph Methylocystis bryophila. J Microbiol Biotechnol 26:717–724.  https://doi.org/10.4014/jmb.1601.01013 CrossRefPubMedGoogle Scholar
  134. 134.
    Singh RK, Singh R, Shivakumar D, Kondaveeti S, Kim T, Li J, Sung BH, Cho B-K, Kim DR, Kim SC, Kalia VC, Zhang Y-HPJ, Zhao H, Kang YC, Lee J-K (2018) Insights into cell-free conversion of CO2 to chemicals by a multienzyme cascade reaction. ACS Catal 8:11085–11093.  https://doi.org/10.1021/acscatal.8b02646 CrossRefGoogle Scholar
  135. 135.
    Kondaveeti S, Mohanakrishna G, Lee J-K, Kalia VC (2019) Methane as a substrate for energy generation using microbial fuel cells. Indian J Microbiol 59:121–124.  https://doi.org/10.1007/s12088-018-0765-6 CrossRefPubMedGoogle Scholar
  136. 136.
    Sajid A, Arora G, Singhal A, Kalia VC, Singh Y (2015) Protein phosphatases of pathogenic bacteria: role in physiology and virulence. Annu Rev Microbiol 69:527–547.  https://doi.org/10.1146/annurev-micro-020415-111342 CrossRefPubMedGoogle Scholar
  137. 137.
    Virmani R, Sajid A, Singhal A, Gaur M, Joshi J, Bothra A, Garg R, Misra R, Singh VP, Molle V, Goel AK, Singh A, Kalia VC, Lee J-K, Hasija Y, Arora G, Singh Y (2019) The Ser/Thr protein kinase PrkC imprints phenotypic memory in Bacillus anthracis spores by phosphorylating the glycolytic enzyme enolase. J Biol Chem 294:8930–8941.  https://doi.org/10.1074/jbc.RA118.005424 CrossRefPubMedGoogle Scholar
  138. 138.
    Sood U, Bajaj A, Kumar R, Khurana S, Kalia VC (2018) Infection and microbiome: impact of tuberculosis on human gut microbiome of Indian cohort. Indian J Microbiol 58:123–125.  https://doi.org/10.1007/s12088-018-0706-4 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Association of Microbiologists of India 2019

Authors and Affiliations

  1. 1.Environmental Biotechnology and Genomics DivisionCSIR-National Environmental and Engineering Research Institute (CSIR-NEERI)NagpurIndia

Personalised recommendations