Indian Journal of Microbiology

, Volume 59, Issue 4, pp 417–421 | Cite as

Antiherpetic Effect of Topical Formulations Containing Sulfated Polysaccharide from Adenanthera pavonina

  • Daniele Zendrini Rechenchoski
  • Karoline Fontana Agostinho
  • Ligia Carla Faccin-Galhardi
  • Audrey Alesandra Stinghen Garcia Lonni
  • Arcelina Pacheco Cunha
  • Nágila Maria Pontes Silva Ricardo
  • Carlos Nozawa
  • Rosa Elisa Carvalho LinharesEmail author
Original research article


Adenanthera pavonina is a native tree of Africa and Asia, introduced in Brazil for reforestation and wood industry. Several pharmacological activities have described scientifically, including antiviral activity. This study evaluated the antiviral effect of sulfated polysaccharide of Adenanthera pavonina (SPAp) against acyclovir (ACV)—resistant (AR-29) and sensitive (KOS) herpes simplex virus strains. The 50% cytotoxic concentration (CC50) was determined by MTT method and the 50% inhibitory concentration (IC50) was evaluated by plaque reduction assay. The in vivo SPAp antiviral activity was performed in Balb/c mice infected by skin scarification and treated with topical 0.5% (w/w) SPAp formulations. SPAp showed a CC50 of 47.81 μg/mL and the IC50 were 0.49 μg/mL (SI = 97.5) and 0.54 μg/mL (SI = 88.5) for the strains KOS and AR-29, respectively. Our results demonstrated that mice treated with SPAp presented a delay in the development and progression of skin lesions compared with the control group.


Adenanthera pavonina Antiviral Fabaceae Herpes simplex virus Polysaccharide 



The authors thank to CAPES (finance code 001), CNPq, Fundação Araucaria and UEL for financial support.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Hassan ST, Masarčíková R, Berchová K (2015) Bioactive natural products with anti-herpes simplex virus properties. J Pharm Pharmacol 67:1325–1336. CrossRefPubMedGoogle Scholar
  2. 2.
    Ghosh T, Chattopadhyay K, Marschall M, Karmakar P, Mandal P et al (2008) Focus on antivirally active sulfated polysaccharides: from structure–activity analysis to clinical evaluation. Glycobiology 19:2–15. CrossRefPubMedGoogle Scholar
  3. 3.
    Chen L, Huang G (2018) The antiviral activity of polysaccharides and their derivatives. Int J Biol Macromol 115:77–82. CrossRefPubMedGoogle Scholar
  4. 4.
    Rodrigues APDC, Oliveira AKM, Laura VA, Yamamoto CR, Chermouth KS et al (2009) Tratamentos para superação da dormência de sementes de Adenanthera pavonina L. Rev Árvore 33:617–623. CrossRefGoogle Scholar
  5. 5.
    Kirtikar KR, Basu BD (1918) Indian medicinal plants, 1st edn. Bishen Singh Mahendra Pal Singh, DehradunCrossRefGoogle Scholar
  6. 6.
    Watt JM, Breyer-Brandwijk MG (1962) The medicinal and poisonous plants of Southern and Eastern Africa being an account of their medicinal and other uses, chemical composition, pharmacological effects and toxicology in man and animal, 2nd edn. E. & S. Livingstone Ltd, EdinburghGoogle Scholar
  7. 7.
    Burkill HM (1994) The useful plants of west tropical Africa, 2nd edn. Royal Botanic Gardens, KewGoogle Scholar
  8. 8.
    Su EN, Yu SS, Pei YH (2007) Studies on chemical constituents from stems and leaves of Adenanthera pavonina. Zhongguo Zhong Yao Za Zhi 32:2135–2138PubMedGoogle Scholar
  9. 9.
    Kothale KV, Rothe SP (2012) Phytochemical screening of Adenanthera pavonina Linn. World J Sci Technol 2:19–22Google Scholar
  10. 10.
    Adedapo ADA, Osude YO, Adedapo AA, Moody JO, Adeagbo AS et al (2009) Blood pressure lowering effect of Adenanthera pavonina seed extract on normotensive rats. Rec Nat Prod 3:82–89Google Scholar
  11. 11.
    Jayakumari S, Ravichandiran V, Velraj M, Singh AK, Lakshmi AV (2012) Anti-inflammatory activity of Adenanthera pavonina Linn. Leaves. J Nat Rem 12:56–62. CrossRefGoogle Scholar
  12. 12.
    Pandhare R, Sangameswaran B (2012) Extract of Adenanthera pavonina L. seed reduces development of diabetic nephropathy in streptozotocin-induced diabetic rats Avicenna. J Phytomed 2:233–242. CrossRefGoogle Scholar
  13. 13.
    Mujahid M, Siddiqui HH, Hussain A, Rahman MDA et al (2015) Phytochemical analysis and evaluation of scavenging activity of methanolic extract of Adenanthera pavonina Linn leaves. J Drug Deliv Ther 5:55–61. CrossRefGoogle Scholar
  14. 14.
    Chauhan R, D’Souza HL, Shabnam RS, Abraham J (2015) Phytochemical and cytotoxicity analysis of seeds and leaves of Adenanthera pavonina. Res J Pharm Technol 8:198–203. CrossRefGoogle Scholar
  15. 15.
    Adeyemi OA, Adedapo AD, Adedapo AA, Moody JO (2015) Evaluation of the antimicrobial activity of crude extracts and chromatographic fractions of Adenanthera pavonina Linn (Leguminosae) seeds. Afr J Biotechnol 14:1067–1073. CrossRefGoogle Scholar
  16. 16.
    Vieira IGP, Mendes FND, Gallao MI, Brito ES (2007) NMR study of galactomannans from the seeds of mesquite tree (Prosopis juliflora (Sw) DC. Food Chem 101:70–73. CrossRefGoogle Scholar
  17. 17.
    O’Neill AN (1995) Sulphated derivatives of laminarin. Can J Chem 33:1097–1101. CrossRefGoogle Scholar
  18. 18.
    Godoi AM, Faccin-Galhardi LC, Lopes N, Nozawa C, Almeida RR et al (2015) Characterization and antiherpetic activity of native and chemically sulfated polysaccharide from Adenanthera pavonina. Curr Pharm Biotechnol 16:1024–1101. CrossRefPubMedGoogle Scholar
  19. 19.
    Gooi AM, Faccin-Galhardi LC, Lopes N, Rechenchoski DZ, Almeida RR et al (2014) Antiviral activity of sulfated polysaccharide of Adenanthera pavonina against poliovirus in HEp-2 cells. Evid Based Complement Altern Med 2014:1–6. CrossRefGoogle Scholar
  20. 20.
    Ribeiro C (2010) Cosmetologia aplicada à dermoestética, 2nd edn. Pharmabooks, São PauloGoogle Scholar
  21. 21.
    Nocchi SR, Companhoni MVP, Mello JCP, Dias Filho BP, Nakamura CV et al (2017) Antiviral activity of crude hydroethanolic extract from Schinus terebinthifolia against Herpes simplex virus type 1. Planta Med 234:509–518. CrossRefGoogle Scholar
  22. 22.
    Karmakar P, Pujol CA, Damonte EB, Ghosh T, Ray B (2010) Polysaccharides from Padina tetrastromatica: structural features, chemical modification and antiviral activity. Carbohydr Polym 80:513–520. CrossRefGoogle Scholar
  23. 23.
    Wang W, Wu J, Zhang X, Hao C, Zhao X et al (2017) Inhibition of influenza a virus infection by fucoidan targeting viral neuraminidase and cellular EGFR pathway. Sci Rep 7:40760. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Tsubura S, Suzuki A (2017) Case report using 4% fucoidan cream for recurrent oral herpes labialis: patient symptoms markedly improved in terms of time to healing and time to loss of discomfort. Dent Open J 4:19–23. CrossRefGoogle Scholar
  25. 25.
    Saha S, Navid MH, Bandyopadhyay SS, Schnitzler P, Ray B (2012) Sulfated polysaccharides from Laminaria angustata: structural features and in vitro antiviral activities. Carbohydr Polym 87:123–130. CrossRefGoogle Scholar
  26. 26.
    Cooper R, Dragar C, Elliot K, Fitton JH, Godwin J (2002) GFS, a preparation of Tasmanian Undaria pinnatifida is associated with healing and inhibition of reactivation of herpes. BMC Complement Altern Med 2:11. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lopes N, Ray S, Espada SF, Bomfim WA, Ray B et al (2017) Green seaweed Enteromorpha compressa (Chlorophyta, Ulvaceae) derived sulphated polysaccharides inhibit herpes simplex virus. Int J Biol Macromol 102:605–612. CrossRefPubMedGoogle Scholar
  28. 28.
    Tang F, Chen F, Li F (2013) Preparation and potential in vivo anti-influenza virus activity of low molecular-weight κ-carrageenans and their derivatives. J Appl Polym Sci 127:2110–2115. CrossRefGoogle Scholar
  29. 29.
    Yamamoto KA, Galhardi LCF, Rincão VP, Soares SA, Vieira ÍGP et al (2013) Antiherpetic activity of an Agaricus brasiliensis polysaccharide, its sulfated derivative and fractions. Int J Biol Macromol 52:9–13. CrossRefPubMedGoogle Scholar
  30. 30.
    Cardozo FTGS, Camelini CM, Mascarello A, Rossi MJ, Nunes RJ et al (2011) Antiherpetic activity of a sulfated polysaccharide from Agaricus brasiliensis mycelia. Antivir Res 92:108–114. CrossRefPubMedGoogle Scholar
  31. 31.
    Cardozo FTGS, Larsen IV, Carballo EV, Jose G, Stern RA et al (2013) In vivo anti-HSV activity of a sulfated derivative of Agaricus brasiliensis mycelial polysaccharide. Antimicrob Agents Chemother 57:2541–2549. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Marques MMM, Morais SMD, Silva ARA, Barroso ND, Filho TRP et al (2015) Antiviral and antioxidant activities of sulfated galactomannans from plants of Caatinga biome. Evid Based Complement Altern Med 2015:1–8. CrossRefGoogle Scholar
  33. 33.
    Melo RC, Geronço MS, Sousa RWR, Ramos LPS, Araújo FP (2018) Biopolymer from Adenanthera pavonina L. seeds: characterization, photostability, antioxidant activity, and biotoxicity evaluation. Int J Polym Sci 2018:1–7. CrossRefGoogle Scholar

Copyright information

© Association of Microbiologists of India 2019

Authors and Affiliations

  • Daniele Zendrini Rechenchoski
    • 1
    • 2
  • Karoline Fontana Agostinho
    • 1
  • Ligia Carla Faccin-Galhardi
    • 1
  • Audrey Alesandra Stinghen Garcia Lonni
    • 2
  • Arcelina Pacheco Cunha
    • 3
  • Nágila Maria Pontes Silva Ricardo
    • 3
  • Carlos Nozawa
    • 1
  • Rosa Elisa Carvalho Linhares
    • 1
    Email author
  1. 1.Departamento de Microbiologia/CCBUniversidade Estadual de LondrinaLondrinaBrazil
  2. 2.Departamento de Ciências FarmacêuticasUniversidade Estadual de LondrinaLondrinaBrazil
  3. 3.Departamento de Química Orgânica e InorgânicaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations