Indian Journal of Microbiology

, Volume 59, Issue 2, pp 161–170 | Cite as

Isolation and Characterization of Multidrug Resistance Aeromonas salmonicida subsp. salmonicida and Its Infecting Novel Phage ASP-1 from Goldfish (Carassius auratus)

  • Chamilani Nikapitiya
  • S. H. S. Dananjaya
  • H. P. S. U. Chandrarathna
  • Amal Senevirathne
  • Mahanama De ZoysaEmail author
  • Jehee LeeEmail author
Original Research article


In this study, Aeromonas salmonicida subsp. salmonicida was isolated, identified by 16S RNA sequencing and its potential lytic phage (ASP-1) was isolated and characterized. The bacterium was positive for virulence genes (ascV, fla, ahyB, gcaT, lip, alt and act) and phenotypic parameters (haemolysis, slime production, lipase activity, DNase test, gelatinase activity and protease activity) were tested. The bacterium was resistant to 27%, intermediate resistant to 14% and susceptible to 59% of tested common antibiotics. Transmission electron microscopy analysis revealed that lytic ASP-1 belongs to the Myoviridae family. The isolated phage was more specific against A. salmonicida subsp. salmonicida (efficiency of plating index = 1), but also had infectivity to A. hydrophila lab strain 1. The bacteriolytic effect of ASP-1 was tested at early exponential phase culture of A. salmonicida subsp. salmonicida, and bacteria growth was apparently decreased with time and MOI dependent manner. One-step growth of ASP-1 showed approximately 30 min of latent period, 16 PFU/infected cells of burst size and 40 min of rise period. The adsorption rate was determined as 3.61 × 108 PFU mL−1 min−1 for 3 min, and rate decreased with time. The ASP-1 genome size was estimated to be approximately 55–60 kD. The phage was stable over wide-range of temperatures, pH and salinity, thus could withstand at severe environmental conditions, indicating that ASP-1 has a potential to develop as an alternative antibiotic to use in ornamental and aquaculture industry.


Aeromonas salmonicida Aeromonas salmonicida subsp. salmonicida Biocontrol Lytic phage Pathogenicity Phage infectivity 



This work was supported by the National Research Foundation of Korea (NRF) grant funded by the government of Korea (MSIT) (2017010990) and a part of the project titled ‘Fish Vaccine Research Center’ funded by the Ministry of Oceans and Fisheries, Korea.

Compliance with Ethical Standards

Conflict of interest

The authors declared that no conflicts of interest.

Supplementary material

12088_2019_782_MOESM1_ESM.docx (230 kb)
Supplementary material 1 (DOCX 229 kb)


  1. 1.
    Chaix G, Roger F, Berthe T, Lamy B, Jumas-Bilak E, Lafite R, Forget-Leray J, Petit F (2017) Distinct Aeromonas populations in water column and associated with copepods from estuarine environment (Seine, France). Front Microbiol 8:1–13. CrossRefGoogle Scholar
  2. 2.
    Janda JM, Abbott SL (2010) The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev 23:35–73. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Krishnakumar K, Raghavan R, Prasad G, Bijukumar A, Sekharan M, Pereira B, Ali A (2009) When pets become pests-exotic aquarium fish and biological invasions in Kerala, India. Curr Sci 97:474–476.
  4. 4.
    Bergh O (2008) Bacterial diseases of fish. In: Eiras JC, Segner H, Wahli T, Kapoor BG (eds) Fish diseases, vol 1. Science Publishers, Enfield, New Hampshire, USA, pp 239–277Google Scholar
  5. 5.
    Long M, Nielsen TK, Leisner JJ, Hansen LH, Shen ZX, Zhang QQ, Li A (2016) Aeromonas salmonicida subsp. salmonicida strains isolated from Chinese freshwater fish contain a novel genomic island and possible regional-specific mobile genetic elements profiles. FEMS Microbiol Lett 363:1–7. CrossRefGoogle Scholar
  6. 6.
    Wiklund T, Dalsgaard I (1998) Occurrence and significance of atypical Aeromonas salmonicida in non-salmonid and salmonid fish species: a review. Dis Aquat Organ 32:49–69. CrossRefPubMedGoogle Scholar
  7. 7.
    Santos Y, Garcia-Marquez Z, Pereira PG, Pazos F, Riaza A, Silva R, EI Morabit A, Ubeira FM (2005) Efficacy of furunculosis vaccines in turbot, Scopthalmus maximus (L): evaluation of immersion, oral and injection delivery. J Fish Dis 28:165–172. CrossRefPubMedGoogle Scholar
  8. 8.
    Austin B, Austin DA (2007) Bacterial fish pathogens: diseases of farmed and wild fish. Springer, Cham, pp 147–228. CrossRefGoogle Scholar
  9. 9.
    EI Morabit A, Garcia-Marquez S, Santos Y (2004) Is sea lamprey a potential source of infection with Aeromonas salmonicida for wild and farmed fish? Bull Eur Assoc Fish Pathol 24:100–103Google Scholar
  10. 10.
    Magarinos B, Devesa S, Gonzalez A, Castro N, Toranzo AE (2011) Furunculosis in Senegalese sole (Solea senegalensis) cultured in a recirculation system. Vet Rec 168:431. CrossRefGoogle Scholar
  11. 11.
    Fernandez-Alvarez C, Gijon D, Alvarez M, Santos Y (2016) First isolation of Aeromonas salmonicida subspecies salmonicida from diseased sea bass, Dicentrarchus labrax (L.), cultured in Spain. Aquac Rep 4:36–41. CrossRefGoogle Scholar
  12. 12.
    Coscelli GA, Bermdez R, Losada AP, Failde LD, Santos Y, Quiroga MI (2014) Acute Aeromonas salmonicida infection in turbot (Scophthalmus maximus L). Histopathological and immunohistochemical studies. Aquaculture 430:79–85. CrossRefGoogle Scholar
  13. 13.
    Kim JH, Hwang SY, Son JS, Han JE, Jun JW, Shin SP, Choresca C Jr, Choi YJ, Park YH, Park SC (2011) Molecular characterization of tetracycline- and quinolone-resistant Aeromonas salmonicida isolated in Korea. J Vet Sci 12:41–48. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Weir M, Rajic A, Dutil L, Uhland C, Bruneau N (2012) Zoonotic bacteria and antimicrobial resistance in aquaculture: opportunities for surveillance in Canada. Can Vet J 53:619–622PubMedPubMedCentralGoogle Scholar
  15. 15.
    Dobiasova H, Kutilova I, Piackova V (2014) Ornamental fish as a source of plasmid-mediated quinolone resistance genes and antibiotic resistance plasmids. Vet Microbiol 171:413–421. CrossRefPubMedGoogle Scholar
  16. 16.
    Beilstein F, Dreiseikelmann B (2008) Temperate bacteriophage PhiO18P from an Aeromonas media isolate: characterization and complete genome sequence. Virology 373:25–29. CrossRefPubMedGoogle Scholar
  17. 17.
    Kim JH, Son JS, Choi YJ, Choresca CH, Shin SP, Han JE, Jun JW, Kang DH, Oh C, Heo SJ, Park SC (2012) Isolation and characterization of a lytic Myoviridae bacteriophage PAS-1 with broad infectivity in Aeromonas salmonicida. Curr Microbiol 64:418–426. CrossRefPubMedGoogle Scholar
  18. 18.
    Kim JH, Son JS, Choi YJ, Choresca CH, Shin SP, Han JE, Jun JW, Park SC (2012) Complete genomic sequence of a T4-like bacteriophage, phiAS4, infecting Aeromonas salmonicida subsp. salmonicida. Arch Virol 157:391–395. CrossRefPubMedGoogle Scholar
  19. 19.
    Chen L, Yuan S, Liu Q, Mai G, Yang J, Deng D, Zhang B, Liu C, Ma Y (2018) In vitro design and evaluation of phage cocktails against Aeromonas salmonicida. Front Microbiol 9:1476. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Le TS, Nguyen TH, Vo PH, Doan VC, Nguyen HL, Tran MT, Tran TT, Southgate PC, Kurtboke Dİ (2018) Protective effects of bacteriophages against Aeromonas hydrophila causing motile Aeromonas Septicemia (MAS) in Striped Catfish. Antibiotics (Basel) 7:16. CrossRefGoogle Scholar
  21. 21.
    Imbeault S, Parent S, Lagace M, Uhland CF, Blais JF (2006) Using bacteriophages to prevent furunculosis caused by Aeromonas salmonicida in farmed brook trout. J Aquat Anim Health 18:203–214. CrossRefGoogle Scholar
  22. 22.
    Verner-Jeffreys DW, Algoet M, Pond MJ, Virdee HK, Bagwell NJ, Roberts EG (2007) Furunculosis in Atlantic salmon (Salmo salar L.) is not readily controllable by bacteriophage therapy. Aquaculture 270:475–484. CrossRefGoogle Scholar
  23. 23.
    Kim JH, Choresca CH, Shin SP, Han JE, Jun JW, Park SC (2015) Biological control of Aeromonas salmonicida subsp. salmonicida infection in rainbow trout (Oncorhynchus mykiss) using Aeromonas phage PAS-1. Transbound Emerg Dis 62:81–86. CrossRefPubMedGoogle Scholar
  24. 24.
    Silva YJ, Moreirinha C, Pereira C, Costa L, Rocha RJM, Cunha A, Gomes NCM, Calado R, Almeida A (2016) Biological control of Aeromonas salmonicida infection in juvenile Senegalese sole (Solea senegalensis) with Phage AS-A. Aquaculture 450:225–233. CrossRefGoogle Scholar
  25. 25.
    Carvalho-Castro GA, Lopes CO, Leal CAG, Cardoso PG, Leite RC, Figueiredo HCP (2010) Detection of type III secretion system genes in Aeromonas hydrophila and their relationship with virulence in Nile tilapia. Vet Microbiol 144:371–376. CrossRefPubMedGoogle Scholar
  26. 26.
    Sen K, Rodgers M (2004) Distribution of six virulence factors in Aeromonas species isolated from US drinking water utilities: a PCR identification. J Appl Microbiol 94:1077–1086. CrossRefGoogle Scholar
  27. 27.
    Nawaz M, Khan SA, Khan AA, Sung K, Tran Q, Kerdahi K, Steele R (2010) Detection and characterization of virulence genes and integrons in Aeromonas veronii isolated from catfish. Food Microbiol 27:327–331. CrossRefPubMedGoogle Scholar
  28. 28.
    Chacon MR, Figueras MJ, Castro-Escarpulli G, Soler L, Guarro J (2003) Distribution of virulence genes in clinical and environmental isolates of Aeromonas spp. Ant van Leeuwenhoek 84:269–278. CrossRefGoogle Scholar
  29. 29.
    Igbinosa IH, Igumbor EU, Aghdasi F, Tom M, Okoh AI (2012) Emerging Aeromonas species infections and their significance in public health. Sci World J 2012:625023. CrossRefGoogle Scholar
  30. 30.
    Freeman DJ, Falkiner FR, Keane CT (1989) New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol 42:872–874CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Harley JP, Prescott LM (2002) Laboratory exercise in microbiology. The McGraw-Hill Companies, New YorkGoogle Scholar
  32. 32.
    Collins CH, Lyne PM, Grange JM (1995) Identification methods. In: Collins CH, Lyne PM, Grange JM (eds) Collins and Lyne’s microbiological methods, 8th edn. Butterworth-Heinemann, UK, p 95Google Scholar
  33. 33.
    Cruz T, Torres JM (2012) Gelatin hydrolysis test protocol. Microbial library American society for microbiology, WashingtonGoogle Scholar
  34. 34.
    Kahla-Nakbi AB, Chaieb K, Bakhrouf A (2009) Investigation of several virulence properties among Vibrio alginolyticus strains isolated from diseased cultured fish in Tunisia. Dis Aquat Organ 86:21–28. CrossRefPubMedGoogle Scholar
  35. 35.
    Adams MH (1959) Enumeration of bacteriophage particles. In: Adams MH (ed) Bacteriophages. Interscience Publishers Ltd, London, pp 27–34Google Scholar
  36. 36.
    Ghosh K, Senevirathne A, Kang HS, Hyun WB, Kim JE, Kim KP (2018) Complete nucleotide sequence analysis of a novel Bacillus subtilis-infecting bacteriophage BSP10 and its effect on poly-gamma-glutamic acid degradation. Viruses 10:240CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Stenholm AR, Dalsgaard I, Middelboe M (2008) Isolation and characterization of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum. Appl Environ Microbiol 7:4070–4078. CrossRefGoogle Scholar
  38. 38.
    Barry GT, Goebel WF (1951) The effect of chemical and physical agents on the phage receptor of phase II Shigella sonnei. J Exp Med 94:387–400CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sha J, Kozlova EV, Chopra AK (2002) Role of various enterotoxin in Aeromonas hydrophila- induced gastroenteritis: generation of enterotoxin gene deficient mutants and evaluation of their enterotoxic activity. Infect Immun 70:1924–1935. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Gosling PJ (1996) Pathogenic mechanisms. In: Austin B, Altwegg M, Gosling PJ, Joseph SW (eds) The genus Aeromonas. Wiley, Chichester, pp 245–265Google Scholar
  41. 41.
    Lago EP, Nieto TP, Farto R (2012) Virulance factors of Aeromonas salmonicida supsp. salmonicida strains associated with infection in turbot Psetta maxima. Dis Aquat Organ 99:145–151. CrossRefPubMedGoogle Scholar
  42. 42.
    Chandrarathna HPSU, Nikapitiya C, Dananjaya SHS, Wijerathne CUB, Wimalasena SHMP, Kwun HJ, Heo GJ, Lee J, De Zoysa M (2018) Outcome of co-infection with opportunistic and multidrug resistant Aeromonas hydrophila and A. veronii in zebrafish: identification, characterization, pathogenicity and immune responses. Fish Shellfish Immunol 80:573–581. CrossRefPubMedGoogle Scholar
  43. 43.
    Hossain S, De Silva BCJ, Wimalasena SHMP, Pathirana HNKS, Dahanayake PS, Heo GJ (2018) Distribution of antimicrobial resistance genes and class 1 integron gene cassette arrays in motile Aeromonas spp. Isolated from goldfish (Carassius auratus). Microb Drug Resist 24:1217–1225. CrossRefPubMedGoogle Scholar
  44. 44.
    Duarte J, Pereira C, Moreirinha C, Salvio R, Lopes A, Wang D, Almeida A (2018) New insights on phage efficacy to control Aeromonas salmonicida in aquaculture systems: an in vitro preliminary study. Aquaculture 495:970–982. CrossRefGoogle Scholar
  45. 45.
    Kim JH, Son JS, Choi YJ, Choresca CH Jr, Shin SP, Han JE, Jun JW, Park SC (2012) Complete genome sequence and characterization of a broad-host range T4-like bacteriophage phiAS5 infecting Aeromonas salmonicida subsp. salmonicida. Vet Microbiol 157:164–171. CrossRefPubMedGoogle Scholar
  46. 46.
    Ackermann HW (2009) Phage classification and characterization. In: Clokie MR, Kropinski AM (eds) Bacteriophages. Methods in molecular biology™, vol 501. Humana Press, New York City, pp 127–140. CrossRefGoogle Scholar
  47. 47.
    Vincent AT, Paquet VE, Bernatchez A, Tremblay DM, Moineau S, Charette SJ (2017) Characterization and diversity of phages infecting Aeromonas salmonicida subsp. salmonicida. Sci Rep 7:7054. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kelly D, McAuliffe O, Ross RP, O’Mahony J, Coffey A (2011) Development of a broad-host-range phage cocktail for biocontrol. Bioeng Bugs 2:31–37. CrossRefPubMedGoogle Scholar
  49. 49.
    Jaiswal A, Koley H, Ghosh A, Palit A, Sarkar B (2013) Efficacy of cocktail phage therapy in treating Vibrio cholerae infection in rabbit model. Microbes Infect 15:152–156. CrossRefGoogle Scholar
  50. 50.
    Bull JJ, Gill JJ (2014) The habits of highly effective phages: population dynamics as a framework for identifying therapeutic phages. Front Microbiol 5:618. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Association of Microbiologists of India 2019

Authors and Affiliations

  • Chamilani Nikapitiya
    • 1
    • 2
  • S. H. S. Dananjaya
    • 3
  • H. P. S. U. Chandrarathna
    • 3
  • Amal Senevirathne
    • 4
  • Mahanama De Zoysa
    • 3
    Email author
  • Jehee Lee
    • 1
    • 2
    Email author
  1. 1.Fish Vaccine Research CenterJeju National UniversityJeju CityRepublic of Korea
  2. 2.Department of Marine Life SciencesJeju National UniversityJeju CityRepublic of Korea
  3. 3.College of Veterinary Medicine and Research Institute of Veterinary MedicineChungnam National UniversityYuseong-gu, DaejeonRepublic of Korea
  4. 4.College of Veterinary MedicineChonbuk National UniversityIksanRepublic of Korea

Personalised recommendations