Skip to main content
Log in

Oxygen differentially affects the hox proteins Hoxb5 and Hoxa5 altering airway branching and lung vascular formation

  • Research Article
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Hoxb5 and Hoxa5 transcription factor proteins uniquely impact lung morphogenesis at the developmental time point when extremely preterm infants are born. The effect of O2 exposure (0.4 FiO2) used in preterm infant care on these Hox proteins is unknown. We used ex vivo fetal mouse lung organ cultures to explore the effects of 0.4 FiO2 on lung airway and vascular formation in the context of Hoxb5 and Hoxa5 expression and regulation. Compared to room air, 48 h (h) 0.4 FiO2 adversely attenuated airway and microvasculature formation while reducing lung growth and epithelial cell volume, and increasing mesenchymal volume. 0.4 FiO2 decreased pro-angiogenic Hoxb5 and VEGFR2 while not altering protein levels of angiostatic Hoxa5. Lungs returned to RA after 24 h 0.4FiO2 had partial structural recovery but remained smaller and less developed. Mesenchymal cell apoptosis increased and proliferation decreased with time in O2 while epithelial cell proliferation significantly increased. Hoxb5 overexpression led to prominent peri-airway VEGFR2 expression and promoted lung vascular and airway patterning. Hoxa5 overexpression had the opposite effects. We conclude that 0.4 FiO2 exposure causes a profound loss of airway and lung microvascular development that occurs partially via reduction in pro-angiogenic Hoxb5 while angiostatic Hoxa5 expression is maintained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ELBW:

Extremely low birth weight

∆SA:

Change in surface area

E:

Embryonic day

h:

Hour

RA:

Room air

VEGFR:

Vascular endothelial growth factor receptor

References

  • Alejandre-Alcazar MA, Kwapiszewska G, Reiss I, Amarie OV, Marsh LM, Sevilla-Perez J, Wygrecka M, Eul B, Kobrich S, Hesse M, Schermuly RT, Werner S, Eickelberg O, Morty RE (2006) Hyperoxia modulates TGF-b/BMP signaling in a mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 292:L537–L549

    Article  PubMed  Google Scholar 

  • Arderiu G, Cuevas I, Chen A, Carrio M, East L, Boudreau NJ (2007) HoxA5 stabilizes adherens junctions via increased Akt1. Cell Adh Migr 1(4):185–195

    Article  PubMed  PubMed Central  Google Scholar 

  • Aski LM, Henderson-Smart DJ, Ko H (2009) Restricted versus liberal oxygen exposure for preventing morbidity and mortality in preterm or low birth weight infants. Cochrane Database Syst Rev 1

  • Aubin J, Lemieuz M, Tremblay M, Berard J, Jennotte L (1997) Early postnatal lethality in Hoxa-5 mutant mice is attributable to respiratory tract defects. Dev Biol 192:432–445

    Article  PubMed  CAS  Google Scholar 

  • Barker GF, Manzo ND, Cotich KL, Shone RK, Waxman AB (2006) DNA damage induced by hyperoxia. Am J Respir Cell Mol Biol 35:277–288

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bhaskaran M, Wang Y, Zhang H, Went T, Baviskar P, Guo Y, Gou D, Liu L (2009) MicroRNA-127 modulates fetal lung development. Physiol Genomics 37:268–278

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bhatt AJ, Pryhuber GS, Huyck H, Watkins RH, Metlay LA, Maniscalco WM (2001) Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am J Resp Crit Care Med 164(1971):1980

    Google Scholar 

  • Bland RD, Mokres LM, Ertsey R, Jacobson BE, Jiang S, Rabinovitch M, Xu L, Shinwell ES, Zhang F, Beasley MA (2007) Mechanical ventilation with 40% oxygen reduces pulmonary expression of genes that regulate lung development and impairs alveolar septation in newborn mice. Am J Physiol Lung Cell Mol Physiol 293:L1099–L1110

    Article  PubMed  CAS  Google Scholar 

  • Bogue CW, Gross I, Vasavada H, Dynia DW, Wilson CM, Jacobs HC (1994) Identification of Hox genes in newborn lung and effects of gestational age and retinoic acid on their expression. Am J Physiol 266:L448–L454

    PubMed  CAS  Google Scholar 

  • Bustani P, Hodge R, Tellabati A, Li J, Pandya H, Kotecha S (2006) Differential response of the epithelium and interstitium in developing human fetal lung explants to hyperoxia. Pediatr Res 59:383–388

    Article  PubMed  Google Scholar 

  • Coalson JJ (2003) Pathology of the new bronchopulmonary dysplasia. Semin Neonatol 8:73–81

    Article  PubMed  Google Scholar 

  • Dieperink HI, Blackwell TS, Prince LS (2006) Hyperoxia and apoptosis in developing mouse lung mesenchyme. Pediatr Res 59:185–190

    Article  PubMed  CAS  Google Scholar 

  • Doyle LW, Faber B, Callanan C, Freezer N, Ford GW, Davis NM (2006) Bronchopulmonary dysplasia in very low birth weight subjects and lung function in late adolescence. Pediatrics 118:108–114

    Article  PubMed  Google Scholar 

  • Galang CK, Hauser CA (1993) Cooperative DNA binding of the human HoxB5 (Hox-2.1) protein is under redox regulation in vitro. Mol Cell Biol 13:4609–4617

    PubMed  CAS  PubMed Central  Google Scholar 

  • Golpon HA, Gerace MW, Moore MD, Miller HL, Tuder RM, Voelkel NF (2001) Hox genes in human lung:altered expression in primary pulmonary hypertension and emphysema. Am J Pathol 158:955–966

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Graba Y, Aragnol D, Pradel J (1997) Drosophila hox complex downstream targets and the function of homeotic genes. Bioessays 19:379–388

    Article  PubMed  CAS  Google Scholar 

  • Hamilton BE, Martin JA, Ventura SJ (2009) Births: preliminary data for 2007. National Vital Stat Rep 57:1–21

    Google Scholar 

  • Hershko AY, Kafri T, Fainsod A, Razin A (2003) Methylation of Hoxa-5 and Hoxb-5 and its relevance to expression during mouse development. Gene 302:65–72

    Article  PubMed  CAS  Google Scholar 

  • Higgins RD, Bancalari E, Willinger M, Raju TNK (2007) Executive summary of the workshop on oxygen in neonatal therapies: controversies and opportunities for research. Pediatrics 119:790–796

    Article  PubMed  Google Scholar 

  • Hislop A (2005) Developmental biology of the pulmonary circulation. Paediatr Respir Rev 6:35–43

    Article  PubMed  Google Scholar 

  • Hombria JCG, Lovegrove B (2003) Beyond homeoosis - Hox function in morphogenesis and organogenesis. Differentiation 71:461–476

    Article  PubMed  Google Scholar 

  • http://www.cbil.upenn.edu/cgi-bin/tess/tess (2010) TESS

  • Inselman LS, Mellins RB (1981) Growth and development of the lung. J Pediatr 98:1–15

    Article  PubMed  CAS  Google Scholar 

  • Jobe AH (2006) The new BPD. NeoReviews 7:e531–e545

    Article  Google Scholar 

  • Kinkead R, Leblanc M, Gulemetova R, Lalancette-Hebert M, Lemieux M, Mandeville I, Jeannotte L (2004) Respiratory adaptations to lung morphological defects in adult mice lacking Hoxa-5 gene function. Pediatr Res 56:553–562

    Article  PubMed  CAS  Google Scholar 

  • Laptook AR, O’Shea TM, Shankaran S, Bhaskar B, Network NN (2005) Adverse neurodevelopmental outcomes among extremely low birth weight infants with a normal head ultrasound: prevalence and antecedents. Pediatrics 115:673–680

    Article  PubMed  Google Scholar 

  • Lazarus P, Del Moral P, Ilves R, Mishra RK, Warburton D et al (2013) A perfusion-independent role of blood vessels in determining branching stereotypy of lung airways. Development 138:2359–2368

    Article  Google Scholar 

  • Mandelville I, Aubin J, Leblanc M, Lalancette-Hebert M, Janelle M-F, Tremblay GM, Jeannotte L (2006) Impact of loss of Hoxa5 function on lung alveogenesis. Am J Pathol 169:1312–1327

    Article  Google Scholar 

  • Maniscalco WM, Watkins RH, O’Reilly J, Shea CP (2002) Increased epithelial cell proliferation in very premature baboons with chronic lung injury. Am J Lung Cell Mol Physiol 283:L991–L1001

    CAS  Google Scholar 

  • Maniscalco WM, Watkins RH, Roper JM, Staversky R, O’reilly MA (2005) Hyperoxic ventilated premature baboons have increased p53, oxidant DNA damage and decreased vegf expression. Pediatr Res 58:549–556

    Article  PubMed  CAS  Google Scholar 

  • McGrath-Morrow S, Rangasamy T, Cho C, Sussan T, Neptune E, Wise R, Tuder RM, Biswal S (2008) Impaired lung homeostasis in neonatal mice exposed to cigarette smoke. Am J Respir Cell Mol Biol 38(4):393–400

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Meyer M, Clauss M, Lepple-Wienhues A, Waltenberger J, Augustin HG, Ziche M, Lanz C, Buttner M, Rziha HJ, Dehio C (1999) A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J 18(2):363–374

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Morgan R, InDerRieden P, Hooiveld MHW, Durston AJ (2000) Identifying Hox paralog groups by the PBX-binding region. TIG 16(2):66–67

    Article  PubMed  CAS  Google Scholar 

  • Mujahid S, Nielsen HC, Volpe MV (2013) miR-221 and miR130a regulate lung airway and vascular development. PLoS One 8:e55911

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • O’reilly MA (2001) DNA damage and cell cycle checkpoints in hyperoxic lung injury: breaking to facilitate repair. Am J Physiol Lung Cell Mol Physiol 281:L291–L305

    PubMed  Google Scholar 

  • Pan G, Simpson RU (2001) Antisense knockout of Hoxb-4 blocks 1,25-dihydroxyvitamin D3 inhibition of c-myc expression. J Endocrin 169:153–159

    Article  CAS  Google Scholar 

  • Rahman I, Yang SR, Biswas SK (2006) Current concepts of redox signaling in the lungs. Antioxid Redox Signal 8(3–4):681–689

    Article  PubMed  CAS  Google Scholar 

  • Rhoads K, Arderiu G, Charboneau A, Hansen SL, Hoffman W, Boudreau N (2005) A role of Hoxa5 in regulating angiogenesis and vascular patterning. Lymphat Res Biol 3:240–252

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi M, Sekiguchi A, Oates AJ, Terry MJ, Miyamoto Y (2002) Hox gene clusters are hotspots of de novo methylation in CpG islands of human lung adenomas. Oncogene 21:3659–3662

    Article  PubMed  CAS  Google Scholar 

  • Skalli O, Ropraz P, Trzeciak A, Benzonana G, Gillessen D, Gabbiani G (1986) A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol 103(6 Pt 2):2787–2796

    Article  PubMed  CAS  Google Scholar 

  • Slavkin HC, Johnson R, Oliver P, Bringas P, Don-Wheeler G, Mayo M, Whitsett JA (1989) Lamellar body formation precedes pulmonary surfactant apoprotein expression during embryonic mouse lung development in vivo and in vitro. Differentiation 41:223–236

    Article  PubMed  CAS  Google Scholar 

  • Stenmark KR, Abman SH (2005) Lung vascular development: implications for the pathogenesis of bronchopulmonary dysplasia. Annu Rev Physiol 67:623–661

    Article  PubMed  CAS  Google Scholar 

  • Ten Have-Opbroek AAW (1991) Lung development in the mouse embryo. Exp Lung Res 17:111–130

    Article  PubMed  Google Scholar 

  • Thebaud B, Ladha F, Michelakis ED, Sawicka M, Thurston G, Eaton F, Hashimoto K, Harry G, Haromy A, Korbutt G, Archer SL (2005) Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury. Circulation 112:2477–2486

    Article  PubMed  CAS  Google Scholar 

  • Tyson JE, Wright LL, Oh W, Kennedy KA, Bele L, Ehrenkranz RA, Stoll BJ, Lemons JA, Stevenson DK, Bauer CR, Korones SB, Fanaroff AA, N. N. R. Network (1999) Vitamin A supplementation for extremely low birth weight infants. N Engl J Med 340:1962–1968

    Article  PubMed  CAS  Google Scholar 

  • van Oostveen JW, Bijl JJ, Raaphorst FM, Walboomers JJM, Meijer CJLM (1999) The role of homeobox genes in normal hematopoiesis and hematological malignancies. Leukemia 13:1675–1690

    Article  PubMed  Google Scholar 

  • Volpe MV, Martin A, Vosatka RJ, Mazzoni CL, Nielsen HC (1997) Hoxb-5 expression in the developing mouse lung suggests a role in branching morphogenesis and epithelial cell fate. Histochem Cell Biol 108:495–504

    Article  PubMed  CAS  Google Scholar 

  • Volpe MV, Vosatka RJ, Nielsen HC (2000) Hoxb-5 control of early airway formation during branching morphogenesis in the developing mouse lung. Biochim Biophys Acta 1475:337–345

    Article  PubMed  CAS  Google Scholar 

  • Volpe MV, Pham L, Lessin M, Ralston SJ, Bhan I, Cutz E, Nielsen HC (2003) Expression of Hoxb-5 during human lung development and in congenital lung malformations. Birth Defects Res Part A Clin Mol Teratol 67:550–556

    Article  PubMed  CAS  Google Scholar 

  • Volpe MV, Ramadurai SM, Pham LD, Nielsen HC (2007) Hoxb-5 down regulation alters tenascin-C, FGF10 and Hoxb gene expression patterns in pseudoglandular period fetal mouse lung. Front Biosci 12:860–873

    Article  PubMed  CAS  Google Scholar 

  • Volpe MV, Wang KT, Nielsen HC, Chinoy MR (2008) Unique spatial and cellular expression patterns of Hoxa5, Hoxb4 and Hoxb6 proteins in normal developing mouse lung are modified in pulmonary hypoplasia. Birth Defects Res Part A Clin Mol Teratol 82:571–584

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Winnik S, Klinkert M, Kurz H, Zoeller C, Heinke J, Wu Y, Bode C, Patterson C, Moser M (2009) HoxB5 induces endothelial sprouting in vitro and modifies intussusceptive angiogenesis in vivo involving angiopoietin-2. Cardiovasc Res 83:558–565

    Article  PubMed  CAS  Google Scholar 

  • Wright CJ, Dennery PA (2009) Manipulation of gene expression by oxygen: a primer from bedside to bench. Pediatr Res 66:3–10

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wu Y, Moser M, Bautch VL, Patterson C (2003) Hoxb5 is an upstream transcriptional switch for differentiation of the vascular endothelium from precursor cells. Mol Cell Biol 23:5680–5691

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xu Y, Saegusa C, Schehr A, Grant S, Whitsett JA, Ikegami M (2009) C/EBP{alpha} is required for pulmonary cytoprotection during hyperoxia. Am J Physiol Lung Cell Mol Physiol 297(2):L286–L298

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yamaguchi TP, Dumont DJ, Conlon RA, Breitman ML, Rossant J (1993) flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development 118(2):489–498

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding: HD044784, Tufts Medical Center Research Grant, AAP Klaus Award, Ikaria Research Award, HL037930, P30 NS047243, Peabody Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MaryAnn V. Volpe.

Additional information

Francheyska Silfa-Mazara and Sana Mujahid contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silfa-Mazara, F., Mujahid, S., Thomas, C. et al. Oxygen differentially affects the hox proteins Hoxb5 and Hoxa5 altering airway branching and lung vascular formation. J. Cell Commun. Signal. 8, 231–244 (2014). https://doi.org/10.1007/s12079-014-0237-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-014-0237-7

Keywords

Navigation