Advertisement

Letters in Spatial and Resource Sciences

, Volume 11, Issue 3, pp 233–243 | Cite as

An assessment of energy production efficiency activity: a spatial analysis

  • Luigi AldieriEmail author
  • Concetto Paolo Vinci
Original Paper
Part of the following topical collections:
  1. Topical Issue on Space and the Environment

Abstract

The aim of this paper is to investigate the extent to which the environmental technological spillover effects on firms’ productivity are affected by the spatial dimension. To this end, we introduce a spatial Durbin model with additional endogenous variables for the energy production efficiency activity of large R&D-intensive firms located in three economic areas: the USA, Japan and Europe. To identify the technological proximity between the firms, we construct an original Mahalanobis environmental industry weight matrix, based on the construction of technological vectors for each firm, with European environmental patents distributed across more technology classes. The findings show a statistically negative impact of spatially distributed environmental spillovers on firms’ productivity in all the economic areas.

Keywords

Innovation Technological spillovers Spatial models 

JEL Classification

O32 O33 Q5 

References

  1. Aldieri, L.: Knowledge technological proximity: evidence from US and European patents. Econ. Innov. New Technol. 22, 807–819 (2013)CrossRefGoogle Scholar
  2. Aldieri, L., Cincera, M.: Geographic and technological R&D spillovers within the Triad: micro evidence from US patents. J. Technol. Transf. 34(2), 196–211 (2009)CrossRefGoogle Scholar
  3. Aldieri, L., Kotsemir, M., Vinci, C.P.: Jacobian spillovers in environmental technological proximity: the role of Mahalanobis index on European patents within the Triad. MPRA Working Paper N. 77274 (2017)Google Scholar
  4. Ambec, S., Cohen, M.A., Elgie, S., Lanoie, P.: The Porter hypothesis at 20: Can environmental regulation enhance innovation and competitiveness? Rev. Environ. Econ. Policy 7(1), 2–22 (2013)CrossRefGoogle Scholar
  5. Anselin, L.: Local indicators of spatial association—LISA. Geograph. Anal. 27, 93–115 (1995)CrossRefGoogle Scholar
  6. Capello, R.: Spatial spillovers and regional growth: a cognitive approach. Eur. Plan. Stud. 17(5), 639–658 (2009)CrossRefGoogle Scholar
  7. Cincera, M., de la Potterie, B.V.P.: International R&D spillovers: a survey. Cahiers Economiques de Bruxelles 169, 3–32 (2001)Google Scholar
  8. Crow, K.: SHP2DTA: Stata module to convert shape boundary files to Stata datasets. https://ideas.repec.org/c/boc/bocode/s456718.html (2015)
  9. European Commission: The 2013 EU Industrial R&D Investment Scoreboard, JRC Scientific and Technical Research Series. http://iri.jrc.ec.europa.eu/scoreboard.html (2013)
  10. Gans, J.S.: Innovation and climate change policy. Am. Econ. J. Econ. Policy 4(4), 125–145 (2012)CrossRefGoogle Scholar
  11. Greaker, M.: Strategic environmental policy: Eco-dumping or a green strategy? J. Environ. Econ. Manag. 45(3), 692–707 (2003)CrossRefGoogle Scholar
  12. Griliches, Z.: Issues in assessing the contribution of R&D to productivity growth. Bell J. Econ. 10, 92–116 (1979)CrossRefGoogle Scholar
  13. Griliches, Z.: The search for R&D spillovers. Scand. J. Econ. 94, 29–48 (1992)CrossRefGoogle Scholar
  14. Hoppmann, J.: The role of interfirm knowledge spillovers for innovation in mass-produced environmental technologies. Organ. Environ.  https://doi.org/10.1177/1086026616680683 (2016)
  15. Jaffe, A.B.: Technological opportunity and spillovers of R&D: evidence from firms’ patents, profits and market value. Am. Econ. Rev. 76(5), 984–1001 (1986)Google Scholar
  16. Kelejian, H.H., Robinson, D.P.: A suggested method of estimation for spatial interdependent models with autocorrelated errors, and an application to a county expenditure model. Pap. Reg. Sci. 72(3), 297–312 (1993)CrossRefGoogle Scholar
  17. Kelejian, H.H., Prucha, I.R.: A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. J. Real Estate Finan. Econ. 17(1), 99–121 (1998)CrossRefGoogle Scholar
  18. Kelejian, H.H., Prucha, I.R.: A generalized moments estimator for the autoregressive parameter in a spatial model. Int. Econ. Rev. 40(2), 509–533 (1999)CrossRefGoogle Scholar
  19. Kondo, K.: SPGEN: Stata module to generate spatially lagged variables. http://econpapers.repec.org/software/boc/bocode/S458105.html (2015)
  20. Kondo, K.: Hot and cold spot analysis using Stata. Stata J. 16, 613–631 (2016)CrossRefGoogle Scholar
  21. Maraut, S., Dernis, H., Webb, C., Spiezia, V., Guellec, D.: The OECD REGPAT database: a presentation. STI Working Paper 2008/2, OECD, Paris (2008)Google Scholar
  22. Marin, G., Lotti, F.: Productivity effects of eco-innovations using data on eco-patents. Ind. Corp. Chang. (2016). https://doi.org/10.193/icc/dtw014
  23. Mohnen, P.: R&D externalities and productivity growth. STI Rev. 18, 39–66 (1996)Google Scholar
  24. Mohr, R.D.: Technical change, external economies and the Porter hypothesis. J. Environ. Econ. Manag. 43(1), 158–168 (2002)CrossRefGoogle Scholar
  25. Moran, P.A.P.: Notes on continuous stochastic phenomena. Biometrika 37 (1/2): 17–23. OECD. REGPAT database, February 2016 (1950)Google Scholar
  26. Pisati, M.: SPMAP: Stata module to visualize spatial data. https://ideas.repec.org/c/boc/bocode/s456812.html (2008)
  27. Porter, M.: America’s green strategy. Sci Am 264(4), 168 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Economic and Statistical SciencesUniversity of SalernoFiscianoItaly

Personalised recommendations