Hepatology International

, Volume 13, Issue 5, pp 546–559 | Cite as

Radiomics in hepatocellular carcinoma: a quantitative review

  • Taiga Wakabayashi
  • Farid Ouhmich
  • Cristians Gonzalez-Cabrera
  • Emanuele Felli
  • Antonio Saviano
  • Vincent Agnus
  • Peter Savadjiev
  • Thomas F. Baumert
  • Patrick Pessaux
  • Jacques Marescaux
  • Benoit GallixEmail author
Review Article


Radiomics is an emerging field which extracts quantitative radiology data from medical images and explores their correlation with clinical outcomes in a non-invasive manner. This review aims to assess whether radiomics is a useful and reproducible method for clinical management of hepatocellular carcinoma (HCC) by reviewing the strengths and weaknesses of current radiomics literature pertaining specifically to HCC. From an initial set of 48 articles recovered through database searches, 23 articles were retained to be included in this review after full screening. Among these 23 studies, 7 used a radiomics approach in magnetic resonance imaging (MRI). Only two studies applied radiomics to positron emission tomography–computed tomography (PET–CT). In the remaining 14 articles, a radiomics analysis was performed on computed tomography (CT). Eight studies dealt with the relationship between biological signatures and imaging findings, and can be classified as radiogenomic studies. For each study included in our review, we computed a Radiomics Quality Score (RQS) as proposed by Lambin et al. We found that the RQS (mean ± standard deviation) was 8.35 ± 5.38 (out of a possible maximum value of 36). Although these scores are fairly low, and radiomics has not yet reached clinical utility in HCC, it is important to underscore the fact that these early studies pave the way for the radiomics field with a focus on HCC. Radiomics is still a very young field, and is far from being mature, but it remains a very promising technology for the future for developing adequate personalized treatment as a non-invasive approach, for complementing or replacing tumor biopsies, as well as for developing novel prognostic biomarkers in HCC patients.


Radiomics Radiogenomics Hepatocellular carcinoma Tumor heterogeneity 



The authors acknowledge the support of ARC, Paris and Institut hospitalo-universitaire, Strasbourg (TheraHCC IHUARC IHU201301187), as well as the European Union (ERC-AdG-2014-671,231-HEPCIR, H2020-667273-HEPCAR). In addition, the authors are grateful to Camille Goustiaux, Christopher Burel, and Guy Temporal for their assistance in proofreading the manuscript.

Author contributions

TW and BG designed the research; TW and FO extracted the data; TW, PS and BG wrote the paper; CG, EF, AS, VA, TFB, PP, and BG edited the paper; JM supervised the paper; All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

Thomas F. Baumert, Patrick Pessaux, Jacques Marescaux, and Benoit Gallix have received research grants from ARC, Paris and Institut hospitalo-universitaire, Strasbourg (TheraHCC IHUARC IHU201301187). Antonio Saviano and Thomas F. Baumert have received research grants from the European Union (ERC-AdG-2014-671231-HEPCIR, H2020-667273-HEPCAR). Taiga Wakabayashi, Farid Ouhmich, Cristians Gonzalez-Cabrera, Emanuele Felli, Vincent Agnus, and Peter Savadjiev declare that they have no conflict of interest.


  1. 1.
    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global Cancer Statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394–424.Google Scholar
  2. 2.
    Hiley C, de Bruin EC, McGranahan N, Swanton C. Deciphering intratumor heterogeneity and temporal acquisition of driver events to refine precision medicine. Genome Biol 2014;15:453.Google Scholar
  3. 3.
    Lin DC, Mayakonda A, Dinh HQ, Huang P, Lin L, Liu X, Ding LW, et al. Genomic and Epigenomic Heterogeneity of Hepatocellular Carcinoma. Cancer Res 2017;77:2255–2265.Google Scholar
  4. 4.
    Lu LC, Hsu CH, Hsu C, Cheng AL. Tumor heterogeneity in hepatocellular carcinoma: facing the challenges. Liver Cancer 2016;5:128–138.Google Scholar
  5. 5.
    Martins-Filho SN, Paiva C, Azevedo RS, Alves VAF. Histological grading of hepatocellular carcinoma—a systematic review of literature. Front Med (Lausanne) 2017;4:193.Google Scholar
  6. 6.
    Mazzaferro V, Llovet JM, Miceli R, Bhoori S, Schiavo M, Mariani L, Camerini T, et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis. Lancet Oncol 2009;10:35–43.Google Scholar
  7. 7.
    Llovet JM, Bru C, Bruix J. Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin Liver Dis 1999;19:329–338.Google Scholar
  8. 8.
    Prospective validation of the CLIP score: a new prognostic system for patients with cirrhosis and hepatocellular carcinoma. The Cancer of the Liver Italian Program (CLIP) Investigators. Hepatology 2000;31:840–845.Google Scholar
  9. 9.
    Farinati F, Rinaldi M, Gianni S, Naccarato R. How should patients with hepatocellular carcinoma be staged? Validation of a new prognostic system. Cancer 2000;89:2266–2273.Google Scholar
  10. 10.
    Okuda K, Ohtsuki T, Obata H, Tomimatsu M, Okazaki N, Hasegawa H, Nakajima Y, et al. Natural history of hepatocellular carcinoma and prognosis in relation to treatment. Study of 850 patients. Cancer 1985;56:918–928.Google Scholar
  11. 11.
    Bruix J, Gores GJ, Mazzaferro V. Hepatocellular carcinoma: clinical frontiers and perspectives. Gut 2014;63:844–855.Google Scholar
  12. 12.
    Sadot E, Simpson AL, Do RK, Gonen M, Shia J, Allen PJ, D’Angelica MI, et al. Cholangiocarcinoma: correlation between molecular profiling and imaging phenotypes. PLoS One 2015;10:e0132953.Google Scholar
  13. 13.
    Sherman M, Bruix J. Biopsy for liver cancer: how to balance research needs with evidence-based clinical practice. Hepatology 2015;61:433–436.Google Scholar
  14. 14.
    Hricak H. Oncologic imaging: a guiding hand of personalized cancer care. Radiology 2011;259:633–640.Google Scholar
  15. 15.
    Sharma B, Martin A, Stanway S, Johnston SR, Constantinidou A. Imaging in oncology—over a century of advances. Nat Rev Clin Oncol 2012;9:728–737.Google Scholar
  16. 16.
    Tirkes T, Hollar MA, Tann M, Kohli MD, Akisik F, Sandrasegaran K. Response criteria in oncologic imaging: review of traditional and new criteria. Radiographics 2013;33:1323–1341.Google Scholar
  17. 17.
    Elsayes KM, Hooker JC, Agrons MM, Kielar AZ, Tang A, Fowler KJ, Chernyak V, et al. 2017 Version of LI-RADS for CT and MR imaging: an update. Radiographics 2017;37:1994–2017.Google Scholar
  18. 18.
    An C, Rakhmonova G, Choi JY, Kim MJ. Liver imaging reporting and data system (LI-RADS) version 2014: understanding and application of the diagnostic algorithm. Clin Mol Hepatol 2016;22:296–307.Google Scholar
  19. 19.
    European Association for the Study of the Liver. EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 2018;69:182–236.Google Scholar
  20. 20.
    Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer 1981;47:207–214.Google Scholar
  21. 21.
    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000;92:205–216.Google Scholar
  22. 22.
    Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis 2010;30:52–60.Google Scholar
  23. 23.
    Tang A, Bashir MR, Corwin MT, Cruite I, Dietrich CF, Do RKG, Ehman EC, et al. Evidence supporting LI-RADS major features for CT- and MR imaging-based diagnosis of hepatocellular carcinoma: a systematic review. Radiology 2018;286:29–48.Google Scholar
  24. 24.
    Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, Sanduleanu S, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 2017;14:749–762.Google Scholar
  25. 25.
    Cassinotto C, Dohan A, Zogopoulos G, Chiche L, Laurent C, Sa-Cunha A, Cuggia A, et al. Pancreatic adenocarcinoma: a simple CT score for predicting margin-positive resection in patients with resectable disease. Eur J Radiol 2017;95:33–38.Google Scholar
  26. 26.
    Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 2012;48:441–446.Google Scholar
  27. 27.
    Lee G, Lee HY, Ko ES, Jeong WK. Radiomics and imaging genomics in precision medicine. Precis Future Med 2017;1:10–31.Google Scholar
  28. 28.
    Aerts HJ. The potential of radiomic-based phenotyping in precision medicine. A review. JAMA Oncol 2016;2:1636–1642.Google Scholar
  29. 29.
    Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, Bussink J, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 2014;5:4006.Google Scholar
  30. 30.
    Larue RT, Defraene G, De Ruysscher D, Lambin P, van Elmpt W. Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures. Br J Radiol 2017;90:20160665.Google Scholar
  31. 31.
    O’Connor JP, Rose CJ, Waterton JC, Carano RA, Parker GJ, Jackson A. Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res 2015;21:249–257.Google Scholar
  32. 32.
    Savadjiev P, Chong J, Dohan A, Vakalopoulou M, Reinhold C, Paragios N, Gallix B. Demystification of AI-driven medical image interpretation: past, present and future. Eur Radiol 2019; 29(3):1616–1624.Google Scholar
  33. 33.
    Kim KA, Kim MJ, Jeon HM, Kim KS, Choi JS, Ahn SH, Cha SJ, et al. Prediction of microvascular invasion of hepatocellular carcinoma: usefulness of peritumoral hypointensity seen on gadoxetate disodium-enhanced hepatobiliary phase images. J Magn Reson Imaging 2012;35:629–634.Google Scholar
  34. 34.
    Renzulli M, Brocchi S, Cucchetti A, Mazzotti F, Mosconi C, Sportoletti C, Brandi G, et al. Can current preoperative imaging be used to detect microvascular invasion of hepatocellular carcinoma? Radiology 2016;279:432–442.Google Scholar
  35. 35.
    Park JH, Kim DH, Kim SH, Kim MY, Baik SK, Hong IS. The clinical implications of liver resection margin size in patients with hepatocellular carcinoma in terms of positron emission tomography positivity. World J Surg 2018;42:1514–1522.Google Scholar
  36. 36.
    Kuo MD, Gollub J, Sirlin CB, Ooi C, Chen X. Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma. J Vasc Interv Radiol 2007;18:821–831.Google Scholar
  37. 37.
    Peng J, Zhang J, Zhang Q, Xu Y, Zhou J, Liu L. A radiomics nomogram for preoperative prediction of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma. Diagn Interv Radiol 2018;24:121–127.Google Scholar
  38. 38.
    Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, Chan BK, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol 2007;25:675–680.Google Scholar
  39. 39.
    Banerjee S, Wang DS, Kim HJ, Sirlin CB, Chan MG, Korn RL, Rutman AM, et al. A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinoma. Hepatology 2015;62:792–800.Google Scholar
  40. 40.
    Taouli B, Hoshida Y, Kakite S, Chen X, Tan PS, Sun X, Kihira S, et al. Imaging-based surrogate markers of transcriptome subclasses and signatures in hepatocellular carcinoma: preliminary results. Eur Radiol 2017;27:4472–4481.Google Scholar
  41. 41.
    Zheng BH, Liu LZ, Zhang ZZ, Shi JY, Dong LQ, Tian LY, Ding ZB, et al. Radiomics score: a potential prognostic imaging feature for postoperative survival of solitary HCC patients. BMC Cancer 2018;18:1148.Google Scholar
  42. 42.
    Akai H, Yasaka K, Kunimatsu A, Nojima M, Kokudo T, Kokudo N, Hasegawa K, et al. Predicting prognosis of resected hepatocellular carcinoma by radiomics analysis with random survival forest. Diagn Interv Imaging 2018;99:643–651.Google Scholar
  43. 43.
    Zhou Y, He L, Huang Y, Chen S, Wu P, Ye W, Liu Z, et al. CT-based radiomics signature: a potential biomarker for preoperative prediction of early recurrence in hepatocellular carcinoma. Abdom Radiol (NY) 2017;42:1695–1704.Google Scholar
  44. 44.
    Chen S, Zhu Y, Liu Z, Liang C. Texture analysis of baseline multiphasic hepatic computed tomography images for the prognosis of single hepatocellular carcinoma after hepatectomy: a retrospective pilot study. Eur J Radiol 2017;90:198–204.Google Scholar
  45. 45.
    Li M, Fu S, Zhu Y, Liu Z, Chen S, Lu L, Liang C. Computed tomography texture analysis to facilitate therapeutic decision making in hepatocellular carcinoma. Oncotarget 2016;7:13248–13259.Google Scholar
  46. 46.
    Raman SP, Schroeder JL, Huang P, Chen Y, Coquia SF, Kawamoto S, Fishman EK. Preliminary data using computed tomography texture analysis for the classification of hypervascular liver lesions: generation of a predictive model on the basis of quantitative spatial frequency measurements—a work in progress. J Comput Assist Tomogr 2015;39:383–395.Google Scholar
  47. 47.
    Savadjiev P, Chong J, Dohan A, Agnus V, Forghani R, Reinhold C, Gallix B. Image-based biomarkers for solid tumor quantification. Eur Radiol 2019. doi:10.1007/s00330-019-06169-wGoogle Scholar
  48. 48.
    Scrivener M, de Jong EEC, van Timmeren JE, Pieters T, Ghaye B, Geets X. Radiomics applied to lung cancer: a review. Transl Cancer Res 2016;5:398–409.Google Scholar
  49. 49.
    Valdora F, Houssami N, Rossi F, Calabrese M, Tagliafico AS. Rapid review: radiomics and breast cancer. Breast Cancer Res Treat 2018;169:217–229.Google Scholar
  50. 50.
    Grossmann P, Gutman DA, Dunn WD, Jr., Holder CA, Aerts HJ. Imaging-genomics reveals driving pathways of MRI derived volumetric tumor phenotype features in Glioblastoma. BMC Cancer 2016;16:611.Google Scholar
  51. 51.
    Bai HX, Lee AM, Yang L, Zhang P, Davatzikos C, Maris JM, Diskin SJ. Imaging genomics in cancer research: limitations and promises. Br J Radiol 2016;89:20151030.Google Scholar
  52. 52.
    Pinker K, Shitano F, Sala E, Do RK, Young RJ, Wibmer AG, Hricak H, et al. Background, current role, and potential applications of radiogenomics. J Magn Reson Imaging 2018;47:604–620.Google Scholar
  53. 53.
    Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology 2016;278:563–577.Google Scholar
  54. 54.
    Jeong WK, Jamshidi N, Felker ER, Raman SS, Lu DS. Radiomics and radiogenomics of primary liver cancers. Clin Mol Hepatol 2019;25(1):21–29.CrossRefGoogle Scholar
  55. 55.
    Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6(7):e1000097.CrossRefGoogle Scholar
  56. 56.
    Wu M, Tan H, Gao F, Hai J, Ning P, Chen J, Zhu S, et al. Predicting the grade of hepatocellular carcinoma based on non-contrast-enhanced MRI radiomics signature. Eur Radiol 2019;29(6):2802–2811.CrossRefGoogle Scholar
  57. 57.
    Zhou W, Zhang L, Wang K, Chen S, Wang G, Liu Z, Liang C. Malignancy characterization of hepatocellular carcinomas based on texture analysis of contrast-enhanced MR images. J Magn Reson Imaging 2017;45:1476–1484.Google Scholar
  58. 58.
    Miura T, Ban D, Tanaka S, Mogushi K, Kudo A, Matsumura S, Mitsunori Y, et al. Distinct clinicopathological phenotype of hepatocellular carcinoma with ethoxybenzyl-magnetic resonance imaging hyperintensity: association with gene expression signature. Am J Surg 2015;210:561–569.Google Scholar
  59. 59.
    Hectors SJ, Wagner M, Bane O, Besa C, Lewis S, Remark R, Chen N, et al. Quantification of hepatocellular carcinoma heterogeneity with multiparametric magnetic resonance imaging. Sci Rep 2017;7:2452.Google Scholar
  60. 60.
    Starmans MPA, Miclea RL, van der Voort SR, Niessen WJ, Thomeer MG, Klein S: Classification of malignant and benign liver tumors using a radiomics approach. In: Angelini ED, Landman BA, eds. Medical imaging 2018: image processing, vol 10574. Bellingham: Spie-Int Soc Optical Engineering, 2018 (Epub ahead of print).Google Scholar
  61. 61.
    Blanc-Durand P, Van Der Gucht A, Jreige M, Nicod-Lalonde M, Silva-Monteiro M, Prior JO, Denys A, et al. Signature of survival: a (18)F-FDG PET based whole-liver radiomic analysis predicts survival after (90)Y-TARE for hepatocellular carcinoma. Oncotarget 2018;9:4549–4558.Google Scholar
  62. 62.
    Xia W, Chen Y, Zhang R, Yan Z, Zhou X, Zhang B, Gao X. Radiogenomics of hepatocellular carcinoma: multiregion analysis-based identification of prognostic imaging biomarkers by integrating gene data-a preliminary study. Phys Med Biol 2018;63:035044.Google Scholar
  63. 63.
    Bakr S, Echegaray S, Shah R, Kamaya A, Louie J, Napel S, Kothary N, et al. Noninvasive radiomics signature based on quantitative analysis of computed tomography images as a surrogate for microvascular invasion in hepatocellular carcinoma: a pilot study. J Med Imaging (Bellingham) 2017;4:041303.Google Scholar
  64. 64.
    Cozzi L, Dinapoli N, Fogliata A, Hsu WC, Reggiori G, Lobefalo F, Kirienko M, et al. Radiomics based analysis to predict local control and survival in hepatocellular carcinoma patients treated with volumetric modulated arc therapy. BMC Cancer 2017;17:829.Google Scholar
  65. 65.
    Echegaray S, Gevaert O, Shah R, Kamaya A, Louie J, Kothary N, Napel S. Core samples for radiomics features that are insensitive to tumor segmentation: method and pilot study using CT images of hepatocellular carcinoma. J Med Imaging (Bellingham) 2015;2:041011.Google Scholar
  66. 66.
    Parekh VS, Jacobs MA. Integrated radiomic framework for breast cancer and tumor biology using advanced machine learning and multiparametric MRI. NPJ Breast Cancer 2017;3:43.Google Scholar
  67. 67.
    Papp L, Potsch N, Grahovac M, Schmidbauer V, Woehrer A, Preusser M, Mitterhauser M, et al. Glioma survival prediction with combined analysis of in vivo (11)C-MET PET features, ex vivo features, and patient features by supervised machine learning. J Nucl Med 2018;59:892–899.Google Scholar
  68. 68.
    Ng F, Ganeshan B, Kozarski R, Miles KA, Goh V. Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast- enhanced CT texture as a biomarker of 5-year survival. Radiology 2013;266:177–184.Google Scholar
  69. 69.
    LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436–444.Google Scholar
  70. 70.
    Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, Kadoury S, et al. Deep learning: a primer for radiologists. Radiographics 2017;37:2113–2131.Google Scholar
  71. 71.
    Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak J, et al. A survey on deep learning in medical image analysis. Med Image Anal 2017;42:60–88.Google Scholar
  72. 72.
    Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts H. Artificial intelligence in radiology. Nat Rev Cancer 2018;18:500–510.Google Scholar
  73. 73.
    Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, et al. The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 2013;26:1045–1057.Google Scholar

Copyright information

© Asian Pacific Association for the Study of the Liver 2019

Authors and Affiliations

  • Taiga Wakabayashi
    • 1
  • Farid Ouhmich
    • 2
  • Cristians Gonzalez-Cabrera
    • 2
  • Emanuele Felli
    • 1
    • 2
    • 3
    • 4
    • 5
  • Antonio Saviano
    • 2
    • 4
    • 5
  • Vincent Agnus
    • 2
  • Peter Savadjiev
    • 6
  • Thomas F. Baumert
    • 2
    • 4
    • 5
  • Patrick Pessaux
    • 1
    • 2
    • 3
    • 4
    • 5
  • Jacques Marescaux
    • 1
    • 2
    • 3
  • Benoit Gallix
    • 2
    • 6
    Email author
  1. 1.Institut de Recherche Contre les Cancers de l’Appareil Digestif (IRCAD)StrasbourgFrance
  2. 2.Institut hospitalo-universitaire (IHU), Institute for Minimally Invasive Hybrid Image-Guided Surgery, Université de StrasbourgStrasbourgFrance
  3. 3.General, Digestive, and Endocrine Surgery, Nouvel Hôpital Civil, Université de StrasbourgStrasbourgFrance
  4. 4.Inserm, U1110Institut de Recherche sur les Maladies Virales et Hépatiques, Université de StrasbourgStrasbourgFrance
  5. 5.Pôle Hépato-digestif, Hôpitaux UniversitairesStrasbourgFrance
  6. 6.Department of Diagnostic RadiologyMcGill UniversityMontrealCanada

Personalised recommendations