Advertisement

Hepatology International

, Volume 13, Issue 5, pp 560–572 | Cite as

The prognostic role of liver stiffness in patients with chronic liver disease: a systematic review and dose–response meta-analysis

  • Yue Shen
  • Sheng-Di Wu
  • Ling Wu
  • Si-Qi Wang
  • Yao Chen
  • Li-Li Liu
  • Jing Li
  • Chang-Qing Yang
  • Ji-Yao Wang
  • Wei JiangEmail author
Original Article
  • 140 Downloads

Abstract

Background and aims

Liver stiffness measurement (LSM) by transient elastography (TE) has been assessed for the evaluation of clinically relevant outcomes in patients with chronic liver diseases (CLDs) while with variable results. This systematic review and meta–analysis aims to investigate the relationship between baseline LSM by TE and the development of clinically relevant outcomes.

Methods

The systematic review identified eligible cohorts reporting the association between baseline LSM by TE and risk of hepatic carcinoma (HCC), hepatic decompensation (HD), all–cause and/or liver–related mortality and liver–related events (LREs) in CLD patients. Summary relative risks (RRs) with 95% confidence intervals (CIs) were estimated using a random–effect model. The dose–response association was evaluated by generalized least squares trend (Glst) estimation and restricted cubic splines. Commands of GLST, MKSPLINE, MVMETA were applied for statistical analysis.

Results

62 cohort studies were finally included, reporting on 43,817 participants. For one kPa (kilopascal) increment in baseline liver stiffness (LS), the pooled RR (95% CI) was 1.08 (1.05–1.11) for HCC, 1.08 (1.06–1.11) for all–cause mortality, 1.11 (1.05–1.17) for liver-related mortality, 1.08 (1.06–1.10) for HD and 1.07 (1.04–1.09) for LREs. Furthermore, the nonlinear dose–response analysis indicated that the significant increase in the risk of corresponding clinically relevant outcomes turned to a stable increase or a slight decrease with increasing baseline LS changing primarily in the magnitude of effect rather than the direction.

Conclusions

The dose–response meta-analysis presents a combination between the levels of baseline LS and RRs for each clinically relevant outcome. TE, which is noninvasive, might be a novel strategy for risk stratification and identification of patients at high risk of developing these outcomes.

Keywords

Fibroscan Liver Cancer Cirrhosis Outcome 

Abbreviations

ALT

Alanine aminotransferase

CHB

Chronic hepatitis B

CIs

Confidence intervals

CLD

Chronic liver disease

Glst

Generalized least-squares trend

HBV

Hepatitis B virus

HCC

Hepatic carcinoma

HCV

Hepatitis C virus

HD

Hepatic decompensation

HIV

Human immunodeficiency virus

HR

Hazard ratio

kPa

Kilopascal

LREs

Liver-related events

LS

Live stiffness

LSM

Liver stiffness measurement

PH

Portal hypertension

RRs

Relative risks

TE

Transient elastography

ULN

Upper limit of normal

Notes

Acknowledgements

The study was supported by the National Nature Science Foundation, No. 81670541; and National Science and Technology Major Project of China, No. 2013ZX10002004 and No. 2017ZX10203202.

Compliance with ethical standards

Conflict of interest

Yue Shen, Sheng-Di Wu, Ling Wu, Si-Qi Wang, Yao Chen, Li–Li Liu, Jing Li, Chang-Qing Yang, Ji-Yao Wang, Wei Jiang declare that they have no conflict of interest.

Supplementary material

12072_2019_9952_MOESM1_ESM.pdf (38 kb)
Supplementary Fig. 1A1 (PDF 39 kb)
12072_2019_9952_MOESM2_ESM.pdf (39 kb)
Supplementary Fig. 1A2 (PDF 40 kb)
12072_2019_9952_MOESM3_ESM.pdf (61 kb)
Supplementary Fig. 1B1 (PDF 62 kb)
12072_2019_9952_MOESM4_ESM.pdf (29 kb)
Supplementary Fig. 1B2 (PDF 29 kb)
12072_2019_9952_MOESM5_ESM.pdf (112 kb)
Supplementary Fig. 1C1 (PDF 112 kb)
12072_2019_9952_MOESM6_ESM.pdf (180 kb)
Supplementary Fig. 1C2 (PDF 180 kb)
12072_2019_9952_MOESM7_ESM.pdf (118 kb)
Supplementary Fig. 1D1 (PDF 118 kb)
12072_2019_9952_MOESM8_ESM.pdf (182 kb)
Supplementary Fig. 1D2 (PDF 183 kb)
12072_2019_9952_MOESM9_ESM.pdf (72 kb)
Supplementary Fig. 2A1 (PDF 71 kb)
12072_2019_9952_MOESM10_ESM.pdf (76 kb)
Supplementary Fig. 2A2 (PDF 76 kb)
12072_2019_9952_MOESM11_ESM.pdf (65 kb)
Supplementary Fig. 2B1 (PDF 65 kb)
12072_2019_9952_MOESM12_ESM.pdf (64 kb)
Supplementary Fig. 2B2 (PDF 63 kb)
12072_2019_9952_MOESM13_ESM.pdf (68 kb)
Supplementary Fig. 2C1 (PDF 67 kb)
12072_2019_9952_MOESM14_ESM.pdf (72 kb)
Supplementary Fig. 2C2 (PDF 71 kb)
12072_2019_9952_MOESM15_ESM.pdf (69 kb)
Supplementary Fig. 2D1 (PDF 69 kb)
12072_2019_9952_MOESM16_ESM.pdf (72 kb)
Supplementary Fig. 2D2 (PDF 71 kb)
12072_2019_9952_MOESM17_ESM.pdf (63 kb)
Supplementary Fig. 3A1 (PDF 63 kb)
12072_2019_9952_MOESM18_ESM.pdf (61 kb)
Supplementary Fig. 3A2 (PDF 60 kb)
12072_2019_9952_MOESM19_ESM.pdf (61 kb)
Supplementary Fig. 3B1 (PDF 61 kb)
12072_2019_9952_MOESM20_ESM.pdf (63 kb)
Supplementary Fig. 3B2 (PDF 63 kb)
12072_2019_9952_MOESM21_ESM.pdf (62 kb)
Supplementary Fig. 3C1 (PDF 62 kb)
12072_2019_9952_MOESM22_ESM.pdf (62 kb)
Supplementary Fig. 3C2 (PDF 62 kb)
12072_2019_9952_MOESM23_ESM.doc (70 kb)
Supplementary Table 1 (DOC 70 kb)
12072_2019_9952_MOESM24_ESM.doc (92 kb)
Supplementary Table 2 (DOC 92 kb)
12072_2019_9952_MOESM25_ESM.doc (35 kb)
Supplementary Table 3 (DOC 35 kb)
12072_2019_9952_MOESM26_ESM.doc (32 kb)
Supplementary Table 4 (DOC 32 kb)
12072_2019_9952_MOESM27_ESM.doc (40 kb)
Supplementary Table 5 (DOC 40 kb)
12072_2019_9952_MOESM28_ESM.doc (42 kb)
Supplementary Table 6 (DOC 42 kb)
12072_2019_9952_MOESM29_ESM.doc (286 kb)
Supplementary Table 7 (DOC 286 kb)
12072_2019_9952_MOESM30_ESM.docx (33 kb)
Supplementary Table 8 (DOCX 33 kb)
12072_2019_9952_MOESM31_ESM.doc (144 kb)
Supplementary Table 9 (DOC 144 kb)
12072_2019_9952_MOESM32_ESM.doc (350 kb)
Supplementary Table 10 (DOC 350 kb)
12072_2019_9952_MOESM33_ESM.doc (76 kb)
Supplementary Table 11 (DOC 76 kb)
12072_2019_9952_MOESM34_ESM.doc (132 kb)
Supplementary Table 12 (DOC 131 kb)

References

  1. 1.
    Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115:209–18.CrossRefGoogle Scholar
  2. 2.
    Pungpapong S, Kim WR, Poterucha JJ. Natural history of hepatitis B virus infection: an update for clinicians. Mayo Clin Proc. 2007;82:967–75.CrossRefGoogle Scholar
  3. 3.
    Maharaj B, Maharaj RJ, Leary WP, et al. Sampling variability and its influence on the diagnostic yield of percutaneous needle biopsy of the liver. Lancet. 1986;1:523–5.CrossRefGoogle Scholar
  4. 4.
    Regev A, Berho M, Jeffers LJ, et al. Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am J Gastroenterol. 2002;97:2614–8.CrossRefGoogle Scholar
  5. 5.
    Martinez SM, Crespo G, Navasa M, et al. Noninvasive assessment of liver fibrosis. Hepatology. 2011;53:325–35.CrossRefGoogle Scholar
  6. 6.
    Ziol M, Handra-Luca A, Kettaneh A, et al. Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with chronic hepatitis C. Hepatology. 2005;41:48–54.CrossRefGoogle Scholar
  7. 7.
    Castera L, Pinzani M, Bosch J. Non invasive evaluation of portal hypertension using transient elastography. J Hepatol. 2012;56:696–703.CrossRefGoogle Scholar
  8. 8.
    Masuzaki R, Tateishi R, Yoshida H, et al. Prospective risk assessment for hepatocellular carcinoma development in patients with chronic hepatitis C by transient elastography. Hepatology. 2009;49:1954–61.CrossRefGoogle Scholar
  9. 9.
    Calvaruso V, Bronte F, Simone F, et al. Liver stiffness at baseline predicts decompensation and hepatocellular carcinoma in patients with compensated HCV cirrhosis. Hepatology. 2012;56:930A–1A.Google Scholar
  10. 10.
    Vicente FJ, Barreiro P, Vispo E, et al. Baseline liver stiffness and achievement of sustained virological response predict liver complications and death in HIV/HCV coinfected patients receiving peginterferon/ribavirin therapy. Hepatology. 2012;56:650A–1A.Google Scholar
  11. 11.
    Klibansky DA, Mehta SH, Curry M, et al. Transient elastography for predicting clinical outcomes in patients with chronic liver disease. J Viral Hepatitis. 2012;19:e184–93.CrossRefGoogle Scholar
  12. 12.
    Wong GLH, Chan HLY, Wong CKY, et al. Liver stiffness–based optimization of hepatocellular carcinoma risk score in patients with chronic hepatitis B. J Hepatol. 2014;60:339–45.CrossRefGoogle Scholar
  13. 13.
    Singh S, Fujii LL, Murad MH, et al. Liver stiffness is associated with risk of decompensation, liver cancer, and death in patients with chronic liver diseases: a systematic review and meta–analysis. Clin Gastroenterol H. 2013;11:1573–84.CrossRefGoogle Scholar
  14. 14.
    Higgins JPT, Green S (eds) Cochrane Handbook for systematic reviews of interventions version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from http://handbook.cochrane.org. Accessed 16 May 2013.
  15. 15.
    Stroup DF, Berlin JA, Morton SC, et al. Meta–analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA. 2000;283:2008–12.CrossRefGoogle Scholar
  16. 16.
    Hayden JA, van der Windt DA, Cartwright JL, et al. Assessing bias in studies of prognostic factors. Ann Intern Med. 2013;158:280–6.CrossRefGoogle Scholar
  17. 17.
    DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.CrossRefGoogle Scholar
  18. 18.
    Berlin JA, Longnecker MP, Greenland S. Meta-analysis of epidemiologic dose-response data. Epidemiology. 1993;4:218–28.CrossRefGoogle Scholar
  19. 19.
    Orsini N, Bellocco R, Greenland S. Generalized least squares for trend estimation of summarized dose–response data. Stata J. 2006;6:40–57.CrossRefGoogle Scholar
  20. 20.
    Orsini N, Li R, Wolk A, et al. Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. Am J Epidemiol. 2012;175:66–73.CrossRefGoogle Scholar
  21. 21.
    Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.CrossRefGoogle Scholar
  22. 22.
    Egger M, Davey SG, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.CrossRefGoogle Scholar
  23. 23.
    Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.CrossRefGoogle Scholar
  24. 24.
    Song ZZ. Acute viral hepatitis increases liver stiffness values measured by transient elastography. Hepatology. 2008;48(349–350):350.Google Scholar
  25. 25.
    Zeuzem S, Feinman SV, Rasenack J, et al. Peginterferon alfa–2a in patients with chronic hepatitis C. N Engl J Med. 2000;343:1666–72.CrossRefGoogle Scholar
  26. 26.
    Chang TT, Liaw YF, Wu SS, et al. Long-term entecavir therapy results in the reversal of fibrosis/cirrhosis and continued histological improvement in patients with chronic hepatitis B. Hepatology. 2010;52:886–93.CrossRefGoogle Scholar
  27. 27.
    Fattovich G, Giustina G, Schalm SW, et al. Occurrence of hepatocellular carcinoma and decompensation in western European patients with cirrhosis type B. The EUROHEP Study Group on Hepatitis B Virus and Cirrhosis. Hepatology. 1995;21:77–82.Google Scholar
  28. 28.
    Fernández-Montero JV, Barreiro P, Vispo E, et al. Liver stiffness predicts liver-related complications and mortality in HIV patients with chronic hepatitis C on antiretroviral therapy. Aids. 2013;27:1129–34.CrossRefGoogle Scholar
  29. 29.
    Wong VW, Chan HL. Prevention of hepatocellular carcinoma: a concise review of contemporary issues. Ann Hepatol. 2012;11:284.CrossRefGoogle Scholar
  30. 30.
    Bazerbachi F, Haffar S, Wang Z, et al. Range of normal liver stiffness and predictors of suspected advanced fibrosis in apparently healthy individuals: a pooled analysis of 16,082 participants. Clin Gastroenterol Hepatol. 2018.  https://doi.org/10.1016/j.cgh.2018.08.069.Google Scholar
  31. 31.
    Roulot D, Czernichow S, Le Clésiau H, et al. Liver stiffness values in apparently healthy subjects: Influence of gender and metabolic syndrome. J Hepatol. 2008;48:606–13.CrossRefGoogle Scholar
  32. 32.
    Wang J, Li J, Zhou Q, et al. Liver stiffness measurement predicted liver-related events and all-cause mortality: a systematic review and nonlinear dose-response meta-analysis. Hepatol Commun. 2018;2:467–76.CrossRefGoogle Scholar
  33. 33.
    Vergniol J, Boursier J, Coutzac C, et al. Evolution of noninvasive tests of liver fibrosis is associated with prognosis in patients with chronic hepatitis C. Hepatology. 2014;60:65–76.CrossRefGoogle Scholar

Copyright information

© Asian Pacific Association for the Study of the Liver 2019

Authors and Affiliations

  1. 1.Department of Gastroenterology and HepatologyZhongshan Hospital, Fudan UniversityShanghaiPeople’s Republic of China
  2. 2.Department of Emergency Medicine, Zhongshan HospitalFudan UniversityShanghaiPeople’s Republic of China
  3. 3.Department of Gastroenterology, Tongji HospitalTongji UniversityShanghaiPeople’s Republic of China

Personalised recommendations